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Time-series Analysis Methods 

The advent of high-density storage devices and long-term mooring capability has 
enabled oceanographers to collect long time series of oceanic and meteorological data. 
Similarly, the use of rapid-response sensors on moving platforms has made it possible 
to generate snapshots of spatial variability over extensive distances. Time-series data 
are collected from moored instrument arrays or by repeated measurements at the same 
location using ships, satellites, or other instrumented packages. Quasi-synoptic spatial 
data are obtained from ships, manned-submersibles, remotely operated vehicles 
(ROVs), autonomous underwater vehicles (AUVs), satellites, and satellite-tracked 
drifters. 

As discussed in Chapters 3 and 4, the first stage of data analysis following data 
verification and editing usually involves estimates of arithmetic means, variances, 
correlation coefficients, and other sample-derived statistical quantities. These quanti- 
ties tell us how well our sensors are performing and help characterize the observed 
oceanographic variability. However, general statistical quantities provide little insight 
into the different types of signals that are blended together to make the recorded data. 
The purpose of this chapter is to present methodologies that examine data series in 
terms of their frequency content. With the availability of modern high-speed 
computers, frequency-domain analysis has become much more central to our ability to 
decipher the cause and effect of oceanic change. The introduction of fast Fourier 
transform (FFT) techniques in the 1960s further aided the application of frequency- 
domain~analysis methods in oceanography. 

5.1 B A S I C  C O N C E P T S  

For historical reasons, the analysis of sequential data is known as time series analysis. As 
a form of data manipulation, it has been richly developed for a wide assortment of 
applications. While we present some of the latest techniques, the emphasis of this 
chapter will be on those "tried and proven" methods most widely accepted by the 
general oceanographic community. Even these established methods are commonly 
misunderstood and incorrectly applied. Where appropriate, references to other texts 
will be given for those interested in a more thorough description of analysis tech- 
niques. As with previous texts, the term "time series" will be applied to both temporal 
and spatial data series; methods which apply in the time domain also apply in the 
space domain. Similarly, the terms frequency domain and wavenumber domain (the 
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formal transforms of the time and spatial series, respectively) are used inter- 
changeably. 

A basic purpose of time series analysis methods is to define the variability of a data 
series in terms of dominant periodic functions. We also want to know the "shape" of 
the spectra. Of all oceanic phenomena, the barotropic astronomically forced tides most 
closely exhibit deterministic and stationary periodic behavior, making them the most 
readily predictable motions in the sea. In coastal waters, tidal observations over a 
period as short as one month can be used to predict local tidal elevations with a high 
degree of accuracy. Where accurate specification of the boundary conditions is 
possible, a reasonably good hydrodynamic numerical model that has been calibrated 
against observations can reproduce the regional tide heights to an accuracy of a few 
centimeters. Tidal currents are less easily predicted because of the complexities 
introduced by stratification, nonlinear interactions, and basin topography. Although 
baroclinic (internal) tides generated over abrupt topography in a stratified ocean have 
little impact on surface elevations, they can lead to strong baroclinic currents. These 
currents are generally stochastic (i.e. nondeterministic) and hence only predictable in 
a statistical sense. 

Surface gravity waves are periodic and quasi-linear oceanic features but are 
generally stochastic due to inadequate knowledge of the surface wind fields, the air- 
sea momentum transfer, and oceanic boundary conditions. Refraction induced by 
wave-current interactions can be important but difficult to determine. Other oceanic 
phenomena such as coastal-trapped waves and near-inertial oscillations have marked 
periodic signatures but are intermittent because of the vagaries of the forcing 
mechanisms and changes in oceanic conditions along the direction of propagation. 
Other less obvious regular behavior can be found in observed time and space records. 
For instance, oceanic variability at the low-frequency end of the spectrum is 
dominated by fluctuations at the annual to decadal periods, consistent with baroclinic 
Rossby waves and short-term climate change, while that at the ultra-low frequencies is 
dominated by ice-age climate scale variations associated with Milankovitch-type 
processes (changes in the caloric summer insolation at the top of the atmosphere 
arising from changes in the earth's orbital eccentricity, and tilt and precision of its 
rotation axis). 

Common sense should always be a key element in any time-series analysis. 
Attempts to use analytical techniques to find "hidden" signals in a time series often 
are not very convincing, especially if the expected signal is buried in the measurement 
noise. Because noise is always present in real data, it should be clear that, for accurate 
resolution of periodic behavior, data series should span at least a few repeat cycles of 
the time scale of interest, even for stationary processes. Thus, a day-long record of 
hourly values will not fully describe the diurnal cycle in the tide nor will a 12-month 
series of monthly values fully define the annual cycle of sea surface temperature. For 
these short records, modern spectral analysis methods can help us pin-point the peak 
frequencies. As we noted in Chapter 1, a fundamental limitation to resolving time- 
series fluctuations is given by the "sampling theorem" which states that the highest 
detectable frequency or wavenumber (the Nyquist frequency or wavenumber) is 
determined by the interval between the data points. For example, the highest fre- 
quency that we can resolve by an hourly time series is one cycle per 2 h, or one cycle 
per 2At, where At is the interval of time between points in the series. 

For the most part, we fit series of well-known functions to the data in order to 
transform from the time domain to the frequency domain. As with the coefficients of 
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the sine and cosine functions used in Fourier analysis, we generally assume that the 
functions have slowly varying amplitudes and phases, where "slowly" means that 
coefficients change little over the length of the record. Other linear combinations of 
orthogonal functions with similar limitations on the coefficients can be used to 
describe the series. However, the trigonometric functions are unique in that uniformly 
spaced samples covering an integer number of periods of the function form orthogonal 
sequences. Arbitrary orthogonal functions, with a similar sampling scheme, do not 
necessarily form orthogonal sequences. Another advantage of using common functions 
in any analysis is that the behavior of these functions is well understood and can be 
used to simplify the description of the data series in the frequency or wavenumber 
domain. In this chapter, we consider time series to consist of periodic and aperiodic 
components superimposed on a secular (long-term) trend and uncorrelated random 
noise. Fourier analysis and spectral analysis are among the tools used to characterize 
oceanic processes. Determination of the Fourier components of a time series can be 
used to determine a periodogram which can then be used to define the spectral density 
(spectrum) of the time series. However, the periodogram is not the only way to get at 
the spectral energy density. For example, prior to the introduction of the fast Fourier 
transform (FFT), the common method for calculating spectra was through the Fourier 
transform of the autocorrelation function. More modern spectral analysis methods 
involve autoregressive spectral analysis (including use of maximum entropy 
techniques), wavelet transforms, and fractal analysis. 

5.2 S T O C H A S T I C  P R O C E S S E S  A N D  S T A T I O N A R I T Y  

A common goal of most time-series analysis is to separate deterministic periodic 
oscillations in the data from random and aperiodic fluctuations associated with 
unresolved background noise (unwanted geophysical variability) or with instrument 
error. It is worth recalling that time-series analyses are typically statistical procedures 
in which data series are regarded as subsets of a stochastic process. A simple example 
of a stochastic process is one generated by a linear operation on a purely random 
v~iable.  For example, the function x(ti) -- 0.5x(ti_l) + c(ti), i = 1, 2, ..., for which 
X(to) = 0, say, is a linear random process provided that the fluctuations e(ti) are 
statistically independent. Stochastic processes are classified as either discrete or 
continuous. A continuous ("analog") process is defined for all time steps while a 
discrete ("digital") process is defined only at a finite number of points. The data series 
can be scalar (univariate series) or a series of vectors (multivariate series). While we 
will deal with discrete data, we assume that the underlying process is continuous. 

If we regard each data series as a realization of a stochastic process, each series 
contains an infinite ensemble of data having the same basic physical properties. Since 
a particular data series is a sample of a stochastic process, we can apply the same kind 
of statistical arguments to our data series as we did to individual random variables. 
Thus, we will be making statistical probability statements about the results of 
frequency transformations of our data series. This fact is important to remember since 
there is a great temptation to regard transformed values as inherently independent 
data points. Since many data collected in time or space are highly correlated because 
of the presence of low-frequency, nearly deterministic components, such as long- 
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period tides and the seasonal cycle, standard statistical methods do not really apply. 
Contrary to the requirements of stochastic theory, the values are not statistically 
independent. "What  constitutes the ensemble of a possible time series in any given 
situation is dictated by good scientific judgment and not by purely statistical matters" 
(Jenkins and Watts, 1968). A good example of this problem is presented by Chelton 
(1982) who showed that the high correlation between the integrated transport through 
Drake Passage in the Southern Ocean and the circumpolar-averaged zonal wind stress 
"may largely be due to the presence of a strong semi-annual signal in both time 
series." A strong statistical correlation does not necessarily mean there is a cause and 
effect relationship between the variables. 

As implied by the previous section, the properties of a stochastic process generally 
are time dependent and the valuey(t) at any time, t, depends on the time elapsed since 
the process started. A simplifying assumption is that the series has reached a steady 
state or equil ibrium in the sense that the statistical properties of the series are 
independent of absolute time. A minimum requirement for this condition is that the 
probability density function (PDF) is independent of time. Therefore, a stationary 
time series has constant mean, #, and variance, ~r 2. Another consequence of this 
equilibrium state is that.the joint PDF depends only on the time difference tl - t2 = 7- 
and not on absolute times, t~ and t2. The term ergodic is commonly used in association 
with stochastic processes for which time averages can be used in place of ensemble 
averages (see Chapter  3). That is, we can average over "chunks" of a time series to get 
the mean, standard deviation, and other statistical quantities rather than having to 
produce repeated realizations of the time series. Any formalism involving ensemble 
averaging is of little value as the analyst rarely has an ensemble at his disposal and 
typically must deal with a single realization. We need the ergodic theorem to enable us 
to use time averages in place of ensemble averages. 

5.3 C O R R E L A T I O N  F U N C T I O N S  

Discrete or continuous random time series, y(t), have a number of fundamental 
statistical properties that help characterize the variability of the series and make it 
easily possible to compare one time series against another. However, these statistical 
measures also contain less information than the original time series and, except in 
special cases, knowledge of the these properties is insufficient to reconstruct the time 
series. 

(1) Mean and variance. I fy  is a stochastic time series consisting of N values y(ti) = Yi 
measured at discrete times ti {tl, t2, ..., tN}, the true mean value # for the series can be 
estimated by 

1 ~-~Yi (5.3 1) # -  E l y ( t ) ] - ~  
i=1 

where E[y(t)] is the expected value and E[[v(t)l ] < ~ for all t. The estimated mean 
value is not necessarily constant in time; different segments of a time series can have 
different mean values if the series is nonstationary. If E[y2(t)] < ~ for all t, an 
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estimate of the true variance function is given by 

1 N 
0 -2 = E[{y(t)  - #}2] _ N ~ .  [Yi _ ~ ] 2  (5.3.2) 

z--1 

The positive square root of the variance is the standard deviation, 0-, or root-mean- 
square (RMS) value. See Chapter 3 for further discussion on the mean and variance. 

(2) Covariance and correlation functions" These terms are used to describe the 
covariability of given time series as functions of two different times, tl = t and t2 = 
t + T, where 7- is the lag time. If the process is stationary (unchanging statistically with 
time) as we normally assume, then absolute time is irrelevant and the covariance 
functions depend only on 7-. 

Although the terms "covariance function" and "correlation function" are often used 
interchangeably in the literature, there is a fundamental difference between them. 
Specifically, covariance functions are derived from data series following removal of 
the true mean value, #, which we typically approximate using the sample mean, y(t). 
Correlation functions use the "raw" data series before removal of the mean. The 
confusion arises because most analysts automatically remove the mean from any time 
series with which they are dealing. To further add to the confusion, many 
oceanographers define correlation as the covariance normalized by the variance. 

For a stationary process, the autocovariance function, Cyy, which is based on lagged 
correlation of a function with itself, is estimated by 

Cyy(7) - E[{y(t)  - #}{y(t + T) -- #}] 

1 N-k 
- -  N - k E. ~ i  - Y] bli+k - fy] 

z=l 

(5.3.3) 

where 7- - 7k - k A t  (k - O, . . . ,  M)  is the lag time for k sampling time increments, At, 
and M << N. The corresponding expression for the autocorrelation function Ryy is 

Ryy(T) --E[y(t)y(t + 7)] 

N - k  1 (5.3.4) 
- N - k ~. (YiYi+k)  

t=l 

At zero lag (T = 0) 

Cyy(O)  - 0-2 _ R y y ( O ) - / z  2 (5.3.5) 

where we must be careful to define 0-2 in equation (5.3.2) in terms of the normalization 
factor 1 /N  rather than 1 / (N  - 1) (see Chapter 3). From the above definitions, we find 

Cyy(T) = Cyy(-Z);  Ryy(T) = Ryy(--T) (5.3.6) 

indicating that the autocovariance and autocorrelation functions are symmetric with 
respect to the time lag r. 

The autocovariance function can be normalized using the variance (5.3.2) to yield 
the normalized autocovariance function 
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pyy( ) = a2 (5.3.7) 

(Note: some oceanographers call (5.3.7) the autocorrelation function.) 
The basic properties of the normalized autocovariance function are: 

(a) p y y ( T )  --- 1, for T = 0; 
(b) pyy(T) = pyy(-T), for all ~-; 
(c) I Pyy (7-)1 _ 1, for all 7-; 
(d) If the stochastic process is continuous, then pyy(T), must be a continuous function 

o f  T. 

If we now replace one of they(t) in the above relations with another function x(t), we 
obtain the cross-covariance function 

Cxy(T) -- E[{y(t) - ~ }{x(t + T) - #x }] 

1 N-k 
= N ~ - k  ~ k i  - -Y]  [Xi+k -- Y'] 

i=1 

(5.3.8) 

and the cross-correlation function 

Rxy(T) =--E[y(t)x(t + 7-)] 

N - k  
- 

N - k .  
z=l 

(5.3.9) 

The normalized cross-covariance function (or correlation coefficient function) for a 
stationary process is 

_ 

Pxy --  ( 5 . 3 . 1 0 )  
Crxay 

Here, y(t) could be the longshore component of daily mean wind stress and x(t) the 
daily mean sea level elevation at the coast. Typically, sea level lags the longshore wind 
stress by one to two days. 

One should be careful interpreting covariance and correlation estimates made for 
large lags. Problems arise if low-frequency components are present in the data since 
the averaging inherent in these functions becomes based on fewer and fewer samples 
and loses its statistical reliability as the lag increases. For example, at lag 7-= 0.1T 
(i.e. 10% of the length of the time series) there are roughly 10 independent cycles of 
any variability on a time scale, To.1 = 0.1 T, while at lags of 0.5T there are only about 
two independent estimates of the time scale T0.5. In many cases, low-frequency 
components in geophysical time series make it pointless to push the lag times much 
beyond 10-20% of the data series. Some authors argue that division by N rather than 
by N - k reduces the bias at large lags. Although this is certainly true (N >> N - k at 
large lags), it doesn't mean that the result has anything to do with reality. In essence, 
neither of these estimators are optimal. Ideally one should write down the likelihood 
function of the observed time series, if it exists. Differentiation of this likelihood 
function would then give a set of equations for the maximum likelihood estimates of 
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the autocovariance function. Unfortunately, the derivatives are in general untraceable 
and one must work with estimators given above. Results for this section are 
summarized as follows: 

(a) Estimators with divisors T = NAt  usually have smaller mean square errors than 
those based on T -  7-; also, those based on 1/T are positive definite while those 
based on 1 / ( T -  7-) may not be. 

(b) Some form of correction for low-frequency trends is required. In simple cases, one 
can simply remove a mean value while in others the trend can be removed. Trend 
removal must be done carefully so that erroneous data are not introduced into the 
time series during the subtraction of the trend. 

(c) There will be strong correlations between values in the autocorrelation function if 
the correlation in the original series was moderately strong; the autocorrelation 
function, which can be regarded as a new time series derived from y(t), will, in 
general, be more strongly correlated than the original series. 

(d) Due to the correlation in (c), the autocorrelation function may fail to dampen 
according to expectations; this will increase the basic length scale in the function. 

(e) Correlation is a relative measure only. 

In addition to its direct application to time-series analysis, the autocorrelation 
function was critical to the development of early spectral analysis techniques. 
Although modern methods typically calculate spectral density distributions directly 
from the Fourier transforms of the data series, earlier methods determined spectral 
estimates from the Fourier transform of the autocorrelation function. An important 
milestone in time-series analysis was the proof by N. Wiener and A. Khinchin in the 
1930s that the correlation functions are related to the spectral density functions 
function through Fourier transform relationships. According to the Wiener-Khinchin 
relations, the autospectrum of a time series is the Fourier transform of its 
autocorrelation function. 

(3) Analytical correlation/covariance functions: The autocorrelation function of a zero- 
mean random process c(t) ("white noise") can be written as 

R~(~-) - 2 26(T) (5 3.11) c ~ . ~ ( ~ - )  - ~ 

where 6(7-) is the Dirac delta function. In this example, ~ is the variance of the data 
series. Another useful function is the cross-correlation between the time-lagged 
stationary signal y(t) = a x ( t -  T )+  c and the original signal x(t). For constant c~ 

Rxy( -) = - To) + (5.3.12a) 

which, for low noise, has a peak value 

Rxy ( To ) - (zRxx ( O ) - ctO.2x (5.3.12b) 

Functions of the type (5.3.12) have direct use in ocean acoustics where the time lag, To, 
at the peak of the zero-mean autocorrelation function can be related to the phase 
speed c and distance of travel d of the transmitted signal x(t) through the relation 
To = d/c. It is through calculations of this type that modern acoustic Doppler current 
meters (ADCMs) and scintillation flow meters determine oceanic currents. In the case 
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of ADCMs, knowing To and d gives the speed c and hence the change of the acoustic 
signal by the currents during the two-way travel time of the signal. Scintillation 
meters measure the delay To for acoustic signals sent between a transmitter-receiver 
pair along two parallel acoustic paths separated by a distance d. The relation 7-o - d /v  
then gives the mean flow speed, v, normal to the direction of the acoustic path. 
Sending the signals both ways in the transmitter-receiver pairs gets around the 
problem of knowing the sound speed c in detail. 

Although the calculation of autocorrelation and autocovariance functions is fairly 
straightforward, one must be very careful in interpreting the resulting values. For 
example, a stochastic process is said to be Gaussian (or normal) if the multivariate 
probability density function is normal. Then the process is completely described by its 
mean, variance, and autocovariance function. However, there is a class of nonGaussian 
processes which have the same normalized autocovariance function, p, as a given 
normal process. Consider the linear system 

ay 
~o -~ + y( t )  - z(t)  (5.3.13) 

where z(t) is white-noise input andy(t) is the output. Here, y(t) is called a "first-order 
autoregressive process" which has the normalized autocorrelation function 

pyy(T) - e -ITI/To (5.3.14) 

Thus, if the input to the first-order system has a normal distribution then by an 
extension of the central limit theorem it may be shown that the output is normal and 
is completely specified by the autocorrelation function. 

Another process with an exponential autocorrelation function which differs greatly 
from the normal process is called the random telegraph signal (Figure 5.3.1). Alpha 
particles from a radioactive source are used to trigger a flip-flop between + 1 and -1 .  
Assuming the process was started at t = - ~  we can derive the normalized 
autocorrelation function as 

pyy(T) - e  -2AITI (5.3.15) 

If A -- 1/2To then this is the same as the autocorrelation function of a normal process, 
which is characteristically different from the flip-flop time series. Again, one must be 
careful when interpreting autocorrelation functions. 
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Figure 5.3.1. A realization of a random telegraph signal with digital amplitudes of • as a function of 
time. 



Time-series Analysis Methods 379 

Table 5.1. Acoustic backscatter anomaly (decibels) measured in bin # 1 from two adjacent transducers on 
a towed 150 kHz ADCP. The data cover a depth range of 75-230 m at increments of 5 m (32 values). 
The two vertical profiles are separated horizontally by a distance of 3.5 m. The means have not been 
removed from the data 

Beam 75 m 80 
1 11.56 
2 14.67 

85 90 95 100 105 110 115 120 
0.67 -8.33 -9.82 -13.91 -18.00 3.67 -2.00 -12.29 -13.71 
3.00 -5.67 -9.64 -12.82 -16.00 -8.50 -11.00 -15.29 -16.71 

125 m 130 135 
-11.33 -8.00 24.14 
-10.33 -2.00 23.71 

140 145 150 155 160 165 170 175 
38.13 40.00 35.00 29.63 24.00 26.50 28.75 30.63 
36.63 41.00 33.14 24.38 15.00 20.63 26.25 31.88 

180 m 185 190 195 200 205 
30.50 31.00 36.00 31.63 21.00 12.25 
31.00 29.13 29.75 24.75 16.00 7.25 

210 215 220 225 230 
3.00 -7.00 -4.43 -0.50 0.75 
3.25 6.38 11.57 12.25 5.38 

(4) Observed covariance functions: To see what autocorrelation functions look like in 
practice, consider the data in Table 5.1. Here, we have tabulated the calibrated 
acoustic backscatter anomaly measured at 5-m depth increments in the upper  ocean 
using a towed 150 kHz acoustic Doppler  current profiler (ADCP). These "t ime series" 
data are from the first bin of adjacent beams 1 and 2 of a four-beam ADCP, and 
represent  the backscatter intensity from zooplankton located at a distance of 5 m from 
the instrument .  Since the t ransducers  are tilted at an angle of 30 ~ to the vertical, the 
two profiles are separated horizontally by only 3.5 m and the autocorrelations should 
be nearly identical at all lags. In this case, we use the normalized covariance (5.3.7) 
derived from equation (5.3.3) in which the sum is divided by the number  of lag values, 
N -  k, for lag 7-= k A t .  

As indicated by the autocorrelation functions in Figure 5.3.2, the functions are 
similar at small lags where statistical reliability is large but diverge significantly at 
higher lags with the decrease in the number  of independent  covariance estimates. 

(5) Imegral  time scales: The integral time scale, T ~, is defined as the sum of the 
normalized autocorrelation function (5.3.7) over the length L -  NA~- of the time 
series for N lag steps, AT. Specifically, the estimate 
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Figure 5.3.2. Autocorrelation functions of the acoustic backscatter data in Table 5.1. 
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T ~  z 
AT N' 

2 ~ [p(ri)+ p(Ti+l)] 
i=0 

AT N' 

2o-2 Z [C(Ti) + C(Ti+I)] 
i=0 

(5.3.16) 

for N '  <_ N -  1 gives a measure of the dominant correlation time scale within a data 
series--for times longer than T*, the data become decorrelated. There are roughly 
ArN/T* actual degrees of freedom within the time series. In reality, the summation 
typically is limited to N' << N since low frequency components within the time series 
prevent the summation from converging to a constant value over the finite length of 
the record. In general, one should continue the summation until it reaches a near- 
constant value which we take as the value for T*. If no plateau is reached within a 
reasonable number of lags, no integral time scale exists. In that case, the integral time 
scale can be approximated by integrating only to the first zero crossing of the 
autocorrelation function (cf. Poulain and Niiler, 1989). 

(6) Correlation analysis versus linear regression: Geophysical data are typically obtained 
from random temporal sequences or spatial fields that cannot be regarded as mutually 
independent.  Because the data series depend on time and/or spatial coordinates, the 
use of linear regression to study relationships between data series may lead to 
incomplete or erroneous conclusions. As an example, consider two time series: A 
white-noise series, consisting of identically distributed and mutually independent 
random variables, and the same series but with a time shift. As the values of the time 
series are statistically independent, the cross-correlation coefficient will be zero at 
zero lag, even though the time series are strictly linearly related. Regression analysis 
would show no relationship between the two series. However, cross-correlation 
analysis would reveal the linear relationship (a coefficient of unity) for a lag equal to 
the time shift. Correlation analysis is often a better way to study relations among time 
series than traditional regression analysis. 

5.4 F O U R I E R  A N A L Y S I S  

For many applications, we can view time series as linear combinations of periodic or 
quasi-periodic components that are superimposed on a long-term trend and random 
high-frequency noise. The periodic components are assumed to have fixed, or slowly 
varying amplitudes and phases over the length of the record. The trends might include 
a slow drift in the sensor characteristics or a long-term component of variability that 
cannot be resolved by the data series. "Noise" includes random contributions from the 
instrument  sensors and electronics, as well as frequency components that are outside 
the immediate range of interest (e.g. small-scale turbulence). A goal of time-series 
analysis in the frequency domain is to reliably separate periodic oscillations from the 
random and aperiodic fluctuations. Fourier analysis is one of the most commonly used 
methods for identifying periodic components in near-stationary time-series oceano- 
graphic data. (If the time series are strongly nonstationary, more localized transforms 
such as the Hilbert and Wavelet transforms should be used.) 
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The fundamentals of Fourier analysis were formalized in 1807 by the French 
mathematician Joseph Fourier (1768-1830) during his service as an administrator 
under Napoleon. Fourier  developed his technique to solve the problem of heat 
conduction in a solid with specific application to heat dissipation in blocks of metal 
being turned into cannons. Fourier 's basic premise was that any finite length, 
infinitely repeated time series, y(t), defined over the principal interval [0, T] can be 
reproduced using a linear summation of cosines and sines, or Fourier series, of the form 

y(t) = y(t) + ~ [Av cos (wpt) + Bp sin (wpt)] (5.4.1) 
P 

in which .9 is the mean value of the record, Ap, Bp are constants (the Fourier 
coefficients), and the specified angular frequencies, wp, are integer (p = 1, 2, ...) 
multiples of the fundamental frequency, wl = 2~fl = 27r/T, where T is the total length 
of the time series. Provided enough of these Fourier components are used, each value 
of the series can be accurately reconstructed over the principal interval. By the same 
token, the relative contribution a given component makes to the total variance of the 
time series is a measure of the importance of that particular frequency component in 
the observed signal. This concept is central to spectral analysis techniques. 
Specifically, the collection of Fourier coefficients having amplitudes Ap, Bp form a 
periodogram which then defines the contribution that each oscillatory component wp 
makes to the total "energy" of the observed oceanic signal. Thus, we can use the 
Fourier components to estimate the power spectrum (energy per unit frequency 
bandwidth) of a time series. Since both At,, Bp must be specified, there are two degrees 
of freedom per spectral estimate derived from the "raw" or unsmoothed periodogram. 

5.4.1 Mathematical formulation 

Let y(t) denote a continuous, finite-amplitude time series of finite duration. Examples 
include hourly sea-level records from a coastal tide gauge station or temperature 
records from a moored thermistor chain. If y is periodic, there is a period T such that 
y(t) = y(t + 7") for all t. In the language of Fourier analysis, the periodic functions are 
sines and cosines, which have the important properties that: 

(1) A finite number of Fourier coefficients achieves the minimum mean square error 
between the original data and a functional fit to the data series; 

(2) the functions are orthogonal so that coefficients for a given frequency can be 
determined independently. 

Suppose that the time series is specified only at discrete times by subsampling the 
continuous series y(t) at a sample spacing of At (Figure 5.4.1). Since the series has a 
duration T, there are a total of N = T/At  sample intervals and N + 1 sample points 
located at times y ( tn )=y(nAt ) - yn (n  = 0 ,  1, ..., N). Using Fourier analysis, it is 
possible to reproduce the original signal as a sum of sine or cosine waves of different 
amplitudes and phases. In Figure 5.4.1, we show a time seriesy(nAt) of 41 data points 
followed by plots of the first, second, and sixth harmonics that were summed to create 
the time series. The frequencies of these harmonics are f = 1/T, 2/T, and 6/T, 
respectively, and each harmonic has the form yk(nAt) = Ck cos [(27rkn/N + ~k] where 
(Ck, 4~h) are the amplitudes and phases of the harmonics for k - 1, 2, 6. Here, 
T = 40At and we have arbitrarily chosen (C1, 4~1) = (2, ~-/4), (C2, ~2) = (0.75, 7r/2), 
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Figure 5.4.1. Discrete subsampling of a continuous signal y(t). The sampling interval is At - 1 time unit 
and the fundamental frequency is f s = 1 /T  where T = NAt  is the total record length and N = 40. The 
signal y(t)  is the sum of the first, second, and sixth harmonics which have the form 

yk(nAt) = Ckcos[(27rkn/N) + cpk]; k = 1, 2, 6; n = O, 1, ..., ~0. 

and (C6, ~6)= (1.0, 7r/6). The N / 2  harmonic, which is the highest frequency 
component that can be resolved by this sampling, has a frequency 

f N -  ( N / 2 ) / N A t  = 1/2At cycles per unit time and a period of 2At. Called the 
sampling or Nyquist  frequency, this represents the highest frequency resolved by the 
sample series in question. (In Chapter 5, we have used the subscript N to denote the 
Nyquist frequency and there is no confusion between this property and the integer N, 
as in n = 1, 2 ,  ..., N, or the buoyancy frequency N(z ) . )  (In this chapter, we have used 
the subscript N to denote the Nyquist frequency fN, and there should be no confusion 
between this property and the integer N, as in n = 1, 2, ..., N, or the buoyancy 
frequency, N ( z ) . )  

The fundamental frequency, fl - 1/T, is used to construct y (t) through the infinite 
Fourier series 

9C 

y( t )  - ~Ao + ~ lap cos (apt) + Bp sin (~pt)] (5.4.2) 
p=l 
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in which 

% = 27rfp = 27vpf~ = 27rp/T; p = 1, 2, ... (5.4.3) 

is the frequency of the pth constituent in radians per unit time (fp is the corresponding 
frequency in cycles per unit time) and Ao/2 is the mean, or "DC" offset, of the time 
series. The factor of 1/2 multiplying A0 is for mathematical convenience. Note that the 
mean value is synonymous with the zero-frequency component obtained in the limit 
w ~ 0. Also, the length of the data record, T, defines both the lowest frequency, fl, 
resolvable by the data series and the maximum frequency resolution, Af = l /T ,  one 
can obtain from discretely sampled data. 

To obtain the coefficients Ap, we simply multiply equation (5.4.2) by cos (wpt) then 
integrate over all possible frequencies. The coefficients Bp, are obtained in the same 
way by multiplying by sin (wpt). Using the orthogonality condition for the product of 
trigonometric functions (which requires that the trigonometric arguments cover an 
exact integer number of 27r cycles over the interval (0, 7")), we find 

T 2/ 
Ap = ~ y(t)  cos (%t) dt, p = 0, 1, 2, ... (5.4.4a) 

0 

T 2/ 
Bp - - ~  y ( t ) s in  (%t) dt, p - 1, 2, ... (5.4.4b) 

0 

where the integral for p = 0 in (5.4.4a) yields A0 - 2~, twice the mean value ofy(t) for 
the entire record. Since each pair of coefficients (Ap, Bp) is associated with a frequency 
~p (or fp), the amplitudes of the coefficients provide a measure of the relative 
importance of each frequency component to the overall signal variability. For 

2 1/2 1/2 example, if (A 6 -4- B62) >> (/122 + B22) we expect there is much more "spectral 
energy" at frequency w6 than at frequency w2. Here, spectral . ~lcrgy refers to the 
amplitudes squared of the Fourier coefficients which repres(r,  the variance, and 
therefore the energy, for that portion of the time series. 

We can also express our Fourier series as amplitude and phase functions in the 
--compact Fourier series form 

OG 

y(t) - �89 + Z Cp cos (wpt - Op) (5.4.5) 
p=l  

in which the amplitude of the pth component is 

2 1/2 Cp - (A2 + Bp) , p - O ,  1,2, . . .  (5.4.6) 

where Co = Ao (Bo = 0) is twice the mean value and 

0p - tan-1 [Bp/Ap], p - 1, 2, ... (5.4.7) 

is the phase angle of the constituent at time t = 0. The phase angle gives the relative 
"lag" of the component in radians (or degrees) measured counterclockwise from the 
real axis (Bp = 0, Ap > 0). The corresponding time lag for the pth component is then 
tp = Op/27vfp in which Op is measured in radians. 
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The discrimination of signal amplitude as a function of frequency given by 
equations (5.4.2) and (5.4.5) provides us with the beginnings of spectral analysis. 
Notice that neither of these expressions allows for a trend in the data. If any trend is 
not first removed from the record, the analysis will erroneously blend the variance 
from the trend into the lower frequency components of the Fourier expansion. 
Moreover, we now see the need for the factor of 1/2 in the leading terms of (5.4.2) and 
(5.4.5). Without  it, the p = 0 components would equal twice the mean component, 

= 1A0 =  Co. 
Up to now we have assumed that y(t) is a scalar quantity. We can also expand the 

time series of a vector property, u(t). Included in this category are time series of 
current velocity from moored current meter arrays and wind velocity from moored 
weather buoys. Expressing vector time series in complex notation, we can write 

u(t) = u(t)+ iv(t) (5.4.8) 

where, for example, u and v might be the north-south and east-west components of 
current velocity in Cartesian coordinates. An individual vector can be expressed as 

oO 

u(t) - u(t) + Z [tip cos (wpt + at, ) + iBp sin (wpt +/3p)] 
p=l 

(5.4.9) 

Here, u(t) is the mean (time averaged) vector, ~ = ~ + iF, and (ap,/3p) are phase lags 
or relative phase differences for the separate velocity components. 

Vector quantities also can be defined through expressions of the form 

OO 

u(t) -- ~ + Z { e x p  [i(s~- + ep-)/2][(A~- +A~)cos[wpt + (s~ - e~,-)/2] 
p-l (5.4.10) 

+ i(A~- - A~) sin [wpt + (s~ - s~)/2]} 

in which A~- and A~- are, respectively, the lengths of the counterclockwise (+) and 
clockwise ( - )  rotary components of the velocity vector, and s~- and stT are the angles 
that these vectors make with the real axis at t = 0. The resultant time series is an 
ellipse with major axis of length L M - A ~  +A~ and minor axis of length 
Lm = ~ - A ~  I" The major axis is oriented at angle 0p - �89 (s~- + st;- ) from the u-axis 
and the current rotates counterclockwise when A~->A~- and clockwise when 
A~-<Ap-. The velocity vector is aligned with the major axis direction 0p when 

- ~ (st; - ~,-). Motions are said to be linearly polarized (rectilinear) if the two wt, t = 1 + 
oppositely rotating components are of the same magnitude and circularly polarized if 
one of the two components is zero. In the northern (southern) hemisphere, motions 
are predominantly clockwise (counterclockwise) rotary. Further details on rotary 
decomposition are presented in Sections 5.6 and 5.8. 

5.4 .2  D i s c r e t e  t i m e  s e r i e s  

Most oceanographic time or space series, whether they were collected in analog or 
digital form, are eventually converted to digital data which may then be expressed as 
series expansions of the form (5.4.2) or (5.4.5). These expansions are then used to 
compute the Fourier transform (or periodogram) of the data series. The basis for this 
transform is Parseval's theorem which states that the mean square (or average) energy 
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of a time series y(t)  can be separated into contributions from individual harmonic 
components to make up the time series. For example, if9 is the sample mean value of 
the time series, yp is the contribution from the nth data value and N is the total 
number  of data values in the time series, then the mean square value of the series 
about its mean (i.e. the variance of the time series) 

cy2_ 1 N 
- N - 1 E [Yn --.9] 2 (5 .4 .11 )  

n--1 

provides a measure of the total energy in the time series. The variance (5.4.11) also can 
be obtained by summing the contributions from the individual Fourier harmonics. 
This kind of decomposition of discrete time series into specific harmonics leads to the 
concept of a Fourier line spectrum (Figure 5.4.2). 

To determine the energy distribution within a time series, y(t) ,  we need to find its 
Fourier  transform. That  is, we need to determine the coefficients Ap, Bp in the Fourier 
series (5.4.2) or, equivalently, the amplitudes and phase lags, Cp, 0p in the Fourier 
series (5.4.5). Suppose that we have first removed any trend from the data record. For 
any time t,, the Fourier series for a finite length, de-trended digital record having N 
(even) values at times tn = t], t2, ... , tN, is 

N/2 

y(t~) : ~ o  + Z 
p = l  

lap cos (wpt.) + Bp sin (wpt.) ] (5.4.12) 

where the angular frequency co,, - 2rrf; = 2rrp/T. Using tn - n. A t  together with (5.4.6) 
and (5.4.7), the final form for the discrete, finite Fourier series becomes �9 
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Figure 5.4.2. An example of a Fourier line spectrum with power at discrete frequencies, f, for a 24-h 
duration record with l-h sampling increment. 
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N/2 

y(tn) - ~Ao + ~-~[A~ cos (27rpn/N)+Bp sin (27rpn/N)] 
p=l  

N/2 

- �89 + ~ Cp cos [(27rpn/N) - Op] 
p=l  

(5.4.13) 

where the leading terms, ~Ao and �89 are the mean values of the record. The 
coefficients are again determined using the orthogonality condition for the trigono- 
metric functions. In fact, the main difference between the discrete case and the 
continuous case formulated in the last section (aside from the fact we can no longer 
have an infinite number of Fourier components) is that coefficients are now defined 
through the summations rather than through integrals 

~y~cos (27 rpn /N) ,  p - O 1 2 N / 2  
2 

A p - - ~  , , ,..., 
n=l 
~ y  

2 
~ y ~ ,  B0 - 0 A0 
n=l 

1 
~ y n  cos (nTr), BN/2 = 0 AN~2 = -~ 
n=l 

Bp -N2  ~ y ,  sin (27rpn/N), p - 1, 2, ..., (N/2) - 1 (5.4.14) 
n=l 

Notice that the summations in equations (5.4.14) consist of multiplying the data 
record by sine and cosine functions which "pick out" from the record those frequency 
components specific to their trigonometric arguments. Remember, the orthogonality 
condition requires that the arguments in the trigonometric functions be integer 
multiples of the total record length, T = NAt ,  as they are in equation (5.4.14). If they 
are not, the sines and cosines do not form an orthonormal set of basis functions for the 
Fourier expansion and the original signal cannot be correctly replicated. 

The arguments 27rpn/N in the above equations are based on a hierarchy of equally 
spaced frequencies wp = 27rp/(NAt) and time increment "n". The summation goes to 
N/2 which is the limit of coefficients we can determine; for p > N/2 the trigonometric 
functions simply begin to cause repetition of coefficients already obtained for the 
interval p <_ N/2 .  Furthermore, it should be obvious that because there are as many 
coefficients as data points and because the trigonometric functions form an orthogonal 
basis set, the summation over the 2(N/2) = N discrete coefficients provides an exact 
replication of the time series, y(t). Small differences between the original data and the 
Fourier series representation arise because of roundoff errors accumulated during the 
arithmetic calculations (see Chapter 3). 

The steps in computing the Fourier coefficients are as follows. Step 1: calculate the 
arguments ~pn = 27rpn/N for each integer p and n. Step 2: for each n = 1, 2, . . . ,  N, 
evaluate the corresponding values of cos~pnand sin'bpn, and collect sums of 
Yn" cos ~I, pn and Yn" sin ~I,p,. Step 3: Increment p and repeat steps 1 and 2. The proce- 
dure requires roughly N 2 real multiply-add operations. For any real data sequence, 
roundoff errors plus errors associated with truncation of the total allowable number of 
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desired Fourier components (maximum fp < fN/2) will give rise to a less than perfect 
fit to the data. The residual Ay(t) =y( t )  - yps ( t )  between the observationsy(t) and the 
calculated Fourier series yps(t) will diminish with increased computational precision 
and increased numbers of allowable terms used in the series expansion. When 
computing the phases 0p = tan-l[Bp/Ap] in the formulation (5.4.13), one must take 
care to examine in which quadrants Ap and Bp are situated. For example, 
tan -I (0.2/0.7) differs from tan -1 ( - 0 . 2 / -  0.7) by 180 ~ The familiar ATAN2 function 
in FORTRAN is especially designed to take care of this problem. 

5.4.3 A computational example 

The best way to demonstrate the computational procedure for Fourier analysis is with 
an example. Consider the two-year segment of monthly mean sea surface temperatures 
measured at the Amphitr i te  light station off the southwest coast of Vancouver Island 
(Table 5.2). Each monthly value is calculated from the average of daily surface 
thermometer  observations collected around noon local time and tabulated to the 
nearest 0.1~ These data are known to contain a strong seasonal cycle of warming and 
cooling which is modified by local effects of runoff, tidal stirring and wind mixing. 

The data in Table 5.2 are in the form y(tn), where n - 1, 2, ... , N (N - 24). To 
calculate the coefficients Ap and B v for these data, we use the summations (5.4.14) for 
each successive integer p, up to p - N/2. These coefficients are then used in (5.4.6) to 
calculate the magnitude Cp - (Ap 2 + Bp2) 1/2 for each frequency component, fp = p/T. 
Since  Cp 2 is proportional to the variance at the specified frequency, the Cp enable us to 
rate the order of importance of each frequency component in the data series. 

The mean value y(t) - �89 and the 12 pairs of Fourier coefficients obtainable from 
the temperature record are listed in Table 5.3 together with the magnitude Cp. Values 
have been rounded to the nearest 0.01 ~ The Nyquist frequency, f N, is 0.50 cycles per 
month (cpmo, p = 12) and the fundamental frequency, fl, is 0.042 cpmo (p = 1). As we 
would anticipate from a visual inspection of the time series, the record is dominated 
by the annual cycle (period = 12 months) followed by weaker contributions from the 
bi-annual cycle (24 months) and semi-annual cycle (six months). For periods shorter 
than six months, the coefficients C v have similar amplitudes and likely represent the 
roundoff errors and background "noise" in the data series. This suggests that we can 
reconstruct the original time series to a high degree of accuracy using only the mean 
value (p = 0) and the first three Fourier coefficients (p = 1, 2, 3). 

Figure 5.4.3 is a plot of the original sea surface temperature (SST) time series and 
the reconstructed Fourier fit to this series using only the first three Fourier 
components from Table 5.3. Comparison of these two time series, shows that the 
reconstructed series does not adequately reproduce the skewed crest of the first year 
nor the high-frequency "ripples" in the second year of the data record. There also is a 

Table 5.2. Monthly mean sea surface temperatures SST (~ at Amphitrite Point (48~ 
125~ on the west coast of Canada for January 1982 through December 1983 

Year 1982 
n 1 2 3 4 5 6 7 8 9 10 11 12 
SST 7.6 7.4 8.2 9.2 10.2 11.5 12.4 13.4 13.7 11.8 10.1 9.0 

Year 1983 
n 13 14 15 16 17 18 19 20 21 22 23 24 
SST 8.9 9.5 10.6 11.4 12.9 12.7 13.9 14.2 13.5 11.4 10.9 8.1 
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Table 5.3. Fourier coefficients and frequencies for the Amphitrite Point monthly mean temperature data. 
Frequency is in cycles per month (cpmo). Ao/2 is the mean temperature and Op is the phase lag for the pth 
component taken counterclockwise from the positive Ap axis 

Freq. Period Coeff. Coeff. Coeff. Phase 0p 
p (cpmo) (month) Ap (~ Bp (~ Cp (~ (degrees) 

0 0 - 21.89 0 21.89 0 
1 0.042 24 -0.55 -0.90 1 .05 -121.4 
2 0.083 12 - 1.77 - 1.99 2.67 - 131.7 
3 0.125 8 0.22 -0.04 0.23 -10.3 
4 0.167 6 -0.44 -0.06 0.45 - 172.2 
5 0.208 4.8 0.09 -0.07 0.11 -37.9 
6 0.250 4 0.08 -0.04 0.09 -26.6 
7 0.292 3.4 0.01 -0.16 0.16 -58.0 
8 0.333 3 -0.03 -0.16 0.16 -100.6 
9 0.375 2.7 -0.14 0.05 0.15 160.3 

10 0.417 2.4 -0.09 -0.07 0 .11  -142.1 
11 0.458 2.2 -0.08 -0.12 0.14 -123.7 
12 0.500 2 -0.15 0 0.15 0 
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Figure 5.4.3. Monthly mean sea surface temperature (SST) record for Amphitrite Point on the west coast 
of Vancouver Island (see Table 5.1). The bold line is the original 24-month series; the dashed line is the 
S S T  time series generated using the first three Fourier components, fp, p - O, 1, 2, corresponding to the 

mean, 24-month, and 12-month cycles (Fourier components appear in Table 5.2). 

slight mismatch in the maxima and minima between the series. Differences between 
the two curves are typically a round a few tenths of a degree. In contrast, if we use all 
12 components  in Table 5.3, corresponding to 24 degrees of freedom, we get an exact 
replica of the original time series to within machine accuracy. 

5.4.4 Fourier analysis for specified frequencies 

Analysis of t ime series for specific frequencies is a special case of Fourier  analysis that 
involves adjus tment  of the record length to match the periods of the desired Four ier  
components .  As we illustrate in the following sections, analysis for specific frequency 
components  is best conducted using least-squares fitting methods rather than Four ier  
analysis. Least-squares analysis requires that there be many fewer consti tuents  than 
data values, which is usually the case for tidal analysis at the well-defined frequencies 
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of the tide-generating potential. Problems arise if there are too few data values. For 
example, suppose that we have a few days of hourly water level measurements and we 
want to use Fourier analysis to determine the amplitudes and phases of the daily tidal 
constituents, fk. To do this, we need to satisfy the orthogonality condition for the 
trigonometric basis functions for which terms like f cos (27rfjt)cos (2~fkt)dt are zero 
except where fj = fk (the integral is over the entire length of the record, 7). The 
approach is only acceptable when the length of the data set is an integer multiple of all 
the harmonic frequencies we are seeking. That is, the specified tidal frequencies fk 
must be integer multiples of the fundamental frequency, f~ - 1/T, such that 
fk" T = 1, 2, ..., If this holds, we can use Fourier analysis to find the constituent 
amplitudes and phases at the specified frequencies. In fact, this integer constraint on 
fk" T is a principal reason why oceanographers prefer to use record lengths of 14, 29, 
180, or 355 days when performing analyses of tides. Since the periods of most of the 
major tidal constituents (K~, M2, etc.) are integer multiples of the fundamental tidal 
periods (one lunar day, one lunar month ~ 29 days, one year, 8.8 years, 18.6 years, etc.) 
of the above record lengths, the analysis is aided by the orthogonality of the trigono- 
metric functions. 

A note for those unfamiliar with tidal analysis terminology: Letters of tidal 
harmonics identify the different types ("species") of tide in each frequency band. 
Harmonic components of the tide-producing force that undergo one cycle per lunar 
day (~ 25 h) have a subscript 1 (e.g. K1), those with two cycles per lunar day have 
subscript 2 (e.g. M2), and so on. Constituents having one cycle per day are called 
diurnal constituents, those with two cycles per day, semidiurnal constituents. The 
main daily tidal component, the K~ constituent, has a frequency of 0.0418 cph 
(corresponding to an angular speed of 15.041 ~ per mean solar hour) and is associated 
with the cyclic changes in the luni-solar declination. The main semidiurnal tidal 
constituent, the M2 constituent, has a frequency of 0.0805 cph (corresponding to an 
angular speed of 28.984 ~ per mean solar hour) and is associated with cyclic changes in 
the lunar position relative to the earth. Other major daily constituents are the O1, P1, 
$2, N2, and K2 constituents. In terms of the tidal potential, the hierarchy of tidal 
constituents is M2, K1, $2, 01, P1, N2, K2, .... Other important tidal harmonics are the 
lunar fortnightly constituent, Mf, the lunar monthly constituent, Mm, and the solar 
annual constituent, Sa. For further details the reader is referred to Thomson (1981) 
and Foreman (1977). 

Returning to our discussion concerning Fourier analysis at specified tYequencies, 
consider the 32-h tide gauge record for Tofino, British Columbia presented in Figure 
5.4.4. As we show in Section 5.5, least-squares analysis can be used to reproduce this 
short record quite accurately using only the K~ tidal constituent and the M2 
constituent. These are the dominant tidal constituents in all regions of the ocean 
except near amphidromic points. Because the record is 32 h long, the diurnal and 
semidiurnal frequencies are not integer multiples of the fundamental frequency fl = 
1/T = 0.031 cph and are not among the sequence of 16 possible frequencies generated 
from the Fourier analysis. In order to have frequency components centered more 
exactly at the K1 and M2 frequencies, we would need to shorten the record to 24 h or 
pad the existing record to 48 h using zeros. In either case, thefk. T for the tides would 
then be close to integers and a standard Fourier analysis would give an accurate fit to 
the observed time series. If we stick with the 32-h series, we find that the tidal energy 
in the diurnal and semidiurnal bands is partitioned among the first three Fourier 
components at frequencies fl - 0.031, f2 = 0.062, and f3 = 0.093 cph. These 
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Figure 5.4.4. Hourly sea-level height (SLH) recorded at Tofino on the west coast of Vancouver Island 
(see Table 5. 7). The bold line is the original 32-h series; the dotted line is the SLH series generated using 
the mean (p = O) plus the next three Fourier components, fp, p = 1, 2, 3 having nontidal periods Tp of 

32, 16, and 8 h, respectively. 

frequencies are only vaguely close to those of the diurnal and semidiurnal constituents 
but do span the energy-containing frequency bands. As a result, the time series 
generated from the record mean combined with the first three Fourier components (p 
= 1, 2, 3) closely approximates the time series obtained using the true tidal fre- 
quencies (see Figure 5.5.2). 

5.4.5 The fast Fourier transform 

One of the main problems with both the autocovariance and the direct Fourier 
methods of spectral estimation is low computational speed. The Fourier method 
requires the expansion into series of sine and cosine terms--a ~ time-consuming 
procedure. The fast Fourier transform (FFT) is a way to speed up this computation 
while retaining the accuracy of the direct Fourier method. This makes the Fourier 
method computationally more attractive than the autocovariance approach. 

To illustrate the improved efficiency of the FFT method, consider a series of N 
values for which N - 2 p (p is a positive integer). The discrete Fourier transform of this 
series would require N 2 operations whereas the FFT method requires only 8Nlog2N 
operations. The savings in computer time can be substantial. For example, if N = 
8192, N 2 = 67,108,864 while 8Nlog2N = 851,968. Computers are much faster now than 
when the FFT method was introduced but the relative savings in computational 
efficiency remains the same. Bendat and Piersol (1986) define the speed ratio between 
the F F T  and discrete Fourier method as N/4p.  This becomes increasingly more 
important as the number of terms increases since the direct method computational 
time is O ( N  2) while for the FFT method it is O(N). If one is seeking a smoothed power 
spectrum, it is often more efficient to compute the spectrum using the FFT technique 
and then smooth in spectral space by averaging over adjoining frequency bands rather 
than smoothing with an autocovariance lag window in the time domain. 
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a power of 2, it should be padded with zeros up to the next power of two. For a series of 
length N - 2p (p a positive integer), the procedure is followed until partitions consist 
of only one term whose Fourier transform equals itself, or the procedure is followed 
until N becomes a prime number, i.e. N = 3. The Fourier transform is then found 
directly for the remaining short series. 

5.5 H A R M O N I C  A N A L Y S I S  

Standard Fourier analysis involves the computation of Fourier amplitudes at equally 
spaced frequency intervals determined as integer multiples of the fundamental 
frequency, fl. That is, for frequencies fl, 2fl, 3fl, . . . ,  fN (fN -- Nyquist frequency). 
However, as we have shown in the previous section, standard Fourier analysis is not 
much use when it comes to the analysis of data series in terms of predetermined 
frequencies. In the case of tidal motions, for example, it would be silly to use any 
frequencies except those of the astronomical tidal forces. Equally important, we want to 
determine the amplitudes and phases of as many frequency components as possible by 
using as short a time series as possible. Since there are typically many more data values 
than there are prescribed frequencies, we have to deal with an overdetermined problem. 
This leads to a form of signal demodulation known as harmonic analysis in which the user 
specifies the frequencies to be examined and applies least-squares techniques to solve 
for the constituents. Harmonic analysis was originally designed for the analysis of tidal 
variability but applies equally to analysis at the annual and semi-annual periods or any 
other well-defined cyclic oscillation. The familiar hierarchy of "harmonic" tidal consti- 
tuents is dominated by diurnal and semidiurnal motions, followed by fortnightly, 
monthly, semi-annual, and annual variability. In this section, we present a general 
discussion of harmonic analysis. The important subject of harmonic analysis of tides 
and tidal currents is treated separately in Section 5.5.3. 

The harmonic analysis approach yields the required amplitudes and phase lags of 
the harmonic tidal coefficients or any other constituents we may wish to specify. Once 
these coefficients have been determined, we can use them to reconstruct the original 
time series. In the case of tidal motions, subtraction of the reconstructed tidal signal 
from the original record yields a time series of the nontidal or residual component of 
the time series. In many cases, it is the residual or "de-tided" signal that is of primary 
interest. If we break the original time series into adjoining or overlapping segments, 
we can apply harmonic analysis to the segments to obtain a sequence of estimates for 
the amplitudes and phase lags of the various frequencies of interest. This leads to the 
notion of signal demodulation. 

5.5.1 A least-squares method 

Suppose we wish to determine the harmonic constituents Aq and Bq for M specified 
frequencies which, in general, will differ from the Fourier frequencies defined by 
(5.4.3). In this case, q = 0, 1, ... ,  M and B0 = 0 so that there are a total of 2M + 1 
harmonic coefficients. Assume that there are many more observations, N, than 
specified coefficients (i.e. that 2M + 1 << N). The problem of fitting M harmonic 
curves to the digital time series is then overdetermined and must be solved using an 
optimization technique. Specifically, we estimate the amplitudes and phases of the 
various components by minimizing the squared difference (i.e. the least squares) 
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between the original data series and our fit to that series. The coefficients for each of 
the M resolvable constituents are found through solution of a (M + 1) • (M + 1) 
matrix equation. 

For M possible harmonic constituents, the time series x(tn), n = 1, ... , N can be 
expanded as 

M 

x( t , )  - ~ + ~ Cq cos (27rfqt, - Cbq) + Xr(tn) (5.5.1) 
q=l 

in which x(t) is the mean value of the record, xr is the residual portion of the time 
series (which may contain other kinds of harmonic constituents), tn -- nAt ,  and where 
Cq, fq and 4~q are respectively the constant amplitude, frequency and phase of the qth 
constituent that we have specified. In the present configuration, we assume that the 
specified frequencies have the form fq = q / N A t  so that the argument 
27rfqtn = 27rqn/N. Reformulation of equation (5.5.1) as 

M 

x( t , )  = ~ + ~ [Aq cos (27rfqtn) + Bq sin (27rfqt,)] + Xr(tn) 
q=l 

(5.5.2) 

yields a representation in terms of the unknown coefficients Aq, Bq where 

2 {__ 2 1/2 Cq - (Aq Bq) , ( f r e q u e n c y  c o m p o n e n t  a m p l i t u d e )  

c~q - t an - l (Bq /Aq) ,  (frequency component phase lag) 
(5.5.3) 

for q = 0, ..., M. To reduce roundoff errors (Section 3.17.3), the mean value, 2, should 
be subtracted from the record prior to the computation of the Fourier coefficients. 

The objective of the least-squares analysis is to minimize the variance, e 2, of  the 
residual time series Xr(tn) in equation (5.5.2), where 

e 2 - ~ x r (t~) = ~ X(tn) -- + ~ M ( t . )  (5.5.4) 
n=l n=l q=l 

and where for convenience we define ~ M  as 

M M 

M(tn) - ~ [Aq cos (27rfqtn) + Bq s in  (27rfqtn)] 
q=l q=l 

M 

= Z [Aq cos (27rqn/N) + Bq s in  (27rqn/N)] 
q=l 

(5.5.5) 

Taking the partial derivatives of (5.5.4) with respect to the unknown coefficients Aq 
and Bq, and setting the results to zero, yields 2M + 1 simultaneous equations for the 
M + 1 constituents 

( )] } OAq = O = 2 ~ n-- x + Z M [-cos(27rqn/N)]  , k = O, ..., M 
n--1 (5 .5 .6)  

0e  2 N 
= 0 = 2  Z { [ x n -  ( 2 + Z M ) ] [ - s i n ( 2 7 r q n / N ) ] } ,  k - 1 , . . . , M  

n=l OBq 
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and from (5.5.9) and (5.5.11) 

yco 262.70 

ycl -25330 
y - yc2 - - . (5.5.14) 

ysl -23.87 
ys2 -0 .69 

where the elements of y have units of ~ The solution z = D - l y  is the vector 

A0 10.95 
A1 -1 .77  

z -- A2 - -0 .44  (5.5.15) 
B1 - 1.99 
B2 -0 .06  

with units of ~ The results are summarized in Table 5.4. As required, the ampli tudes 
and phases of the annual and semi-annual constituents are identical to those obtained 
using Fourier  analysis (see Table 5.3). A plot of the original temperature record and 
the least-squares fitted curve using the annual and semi-annual constituents is 
presented in Figure 5.5.1. The standard deviation for the original record is 2.08~ 

Table 5.4. Coefficients for the annual and semi-annual frequencies from a least-squares analysis of the 
Amphitrite Point monthly mean temperature series (Table 5.2). Frequency units are cycles per month 
(cpmo). q - 0 gives the mean value for the 24-month record. Other coefficients are defined through 
equation (5.5.3) 

Frequency Period 
q (cpmo) (month) Aq (~ Bq (~ Cq (~ 

0 - - 10.95 0.0 10.95 
2 0.083 12 -1.77 -1.99 2.67 
4 0.167 6 -0.44 -0.06 0.45 

o 13 

7' X, x > "  ,,., 11 l i  / /  
=' !- / \ / , '  ' 10 ## 

~ V / 
o 
el 8 I - - 7 /  

/ ~ /  Observed data t.1 
7 I-- 

/ - - - Fitted data 
a 6 P 

5 1 - -  L.. I ! I . . I  I ! I 1__  I I I 
O 2 4 6 8 10 12 14 16 18 20 22 24 

T i m e  ( m o n t h s )  

Figure 5.5.1. Monthly mean sea surface temperature (SST) record for Amphitrite Point on the west coast 
of Vancouver Island (see Table 5.2). The bold line is the original 24-month series. The dashed line is the 
S S T  time series obtained from a least-squares fit of the annual (12 month) and semi-annual (six month) 

cycles to the mean-removed data (see Table 5.3). 
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while that for the fitted record is 1.91~ For this short segment of the data record, the 
two constituents account for 91.7% of the total variance. 

5.5.3 Harmonic analysis of tides 

Harmonic analysis is most useful for the analysis and prediction of tide heights and 
tidal currents. The use of this technique for tides appears to have originated with Lord 
Kelvin (1824-1907)around 1867. Lord Kelvin (Sir William Thomson) is also credited 
with inventing the first tide-predicting machine, although the first practical use of 
such a device was not made until several years later. A discussion of tidal harmonic 
analysis can be found in the Admiralty Manual of Tides (Doodson and Warburg, 1941) 
and Godin (1972). Definitive reports on the least-squares analysis of current and tide- 
height data were presented by Foreman (1977, 1978). 

The least-squares harmonic analysis method has a variety of attractive features. It 
permits resolution of several hundred tidal constituents of which 45 are typically 
astronomical in origin and identified with a specific frequency in the tidal potential. 
The remaining constituents include shallow water constituents associated with bottom 
frictional effects and nonlinear terms in the equations of motion as well as radiational 
constituents originating with atmospheric effects. Both scalar and vector time series 
can be analyzed, with processing of vector series such as current velocity considerably 
more complex than processing of scalar time series such as sea level and water 
temperature. If the record is not sufficiently long to permit the direct resolution of 
neighboring components in the diurnal and semidiurnal frequency bands, the analysis 
makes provision for the "inference" and subsequent inclusion of these components in 
the analysis. For example, in the case of the diurnal constituent, P~, associated with 
the sun's declination, the phase and amplitude are obtained by lowering the resolution 
criterion (called the Rayleigh criterion) for the separation of frequencies until P1 is just 
resolved. The amplitude ratio (amp P1/amp K1) and phase difference (phase Pl-phase 
K1) relative to the readily resolved diurnal constituent K1 can then be calculated and 
used to calculate the P1 constituent for the original record. Equally importantly, the 
method allows for gaps in the time series by ignoring those times for which there are 
no data. Major features of the least-squares optimization procedure for tidal analysis 
are outlined below. 

The aim of least-squares analysis is to estimate the tidal harmonic constituent 
amplitudes and phases which can then be used for long-term tidal predictions. The 
commonly used sampling interval for tidal analysis is 1 h, so that even data collected 
at shorter time intervals are usually averaged to 1 h intervals for standard analysis 
packages. Records must have a minimum length of 13 h in order that they incorporate 
at least one cycle of the M2 tidal frequency (period, 12.42 h). The mean component Zo 
is also included. As the length of the record is increased, additional constituents can 
be added to the analysis. (As noted in Chapter 1, our ability to resolve adjacent 
frequencies improves with the length of the time series. Aside from the degree of noise 
in the data, the main factor limiting the number of derived tidal constituents is the 
length of the record.) For example, the K1 constituent (period, 23.93 h) can be 
adequately determined once the record length exceeds 24 h, although less reliable 
estimates can be made for shorter record lengths. The criteria for deciding which 
constituents can be included is discussed in the next section. In essence, inclusion 
requires that the difference in frequency, Af, between a given constituent and its so- 
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called Rayleigh reference constituent be greater than the fundamental frequency for the 
record; i.e. Af >_fl - 1/T(see following discussion). 

5.5.4 Choice of constituents 

The least-squares method can be applied to any combination of tidal frequencies. 
However, the rational approach is to pick the allowable frequencies on the basis of two 
factors: (1) their relative contribution to the tide-generating potential; and (2) their 
resolvability in relation to a neighboring principal tidal constituent. In other words, 
the constituent should be one that makes a significant contribution to the tide- 
generating force and the record should be of sufficient duration to permit accurate 
separation of neighboring frequencies. Consideration should also be given to the 
required computational time, which increases roughly as the square of the number of 
constituents used in the analysis. Due to noise limitations, the amplitudes of many 
constituents are too small to be adequately resolved by most oceanic data sets. 

To determine whether a specific constituent should be included in the tidal analysis, 
the frequency fm of the constituent is compared to the frequency of the neighboring 
Rayleigh comparison constituent, fR. The constituent can be included provided 

[f~ - f R I T -  t~flT > e (5.5.16) 

where T is the record length and R is typically equal to unity (depending on 
background noise). In effect, equation (5.5.16) states that f,,, should be included iffR is 
an included frequency and the ratio of the frequency difference Af to the fundamental 
frequencyfl - 1/T is greater than unity. This implies that the fundamental frequency, 
which corresponds to the best resolution (separation) achievable on the frequency 
axis, is less than the frequency separation between constituents. Values of R < 1 are 
permitted in the least-squares program to allow for approximate estimates of 
neighboring tidal frequencies for record lengths T shorter than 1/Af. Obviously, the 
longer the record, the more constituents are permitted. 

The choice offR is determined by the hierarchy of constituents within the tidal band 
of interest and level of noise in the observations. The hierarchy is in turn based on the 
contribution a particular constituent makes to the equilibrium tide, with the largest 
contribution usually coming from the M2 tidal constituent (Cartwright and Edden, 
1973). For the major contributors to the equilibrium tide, the magnitude ratios 
relative to M2 in descending order are: K1/M2 = 0.584, $2/M2 = 0.465, and O1/M2 = 
0.415. Depending on the level of noise in the observations, the principal semidiurnal 
constituent M2 (0.0805 cph) and the record mean Zo can be determined for records 
longer than about 13 h duration, while the principal diurnal component K1 
(0.0418 cph) can be determined for records longer than about 24 h. As a rough 
guide, separation of the next most significant semidiurnal constituent $2 (0.0833 cph) 
from the principal component M2 requires a record length T > l /Lf(M2)-f($2)]--  
355 h (14.7 days). Similarly, separation of the next most significant diurnal 
constituent, O1 (0.0387 cph), from the principal component, K1, requires an 
approximate record length T > 1/f(K1) -f(O1)l = 328 h (13.7 days). The frequencies 
f(Ki) and f(O1) then become the Rayleigh comparison frequencies for other 
neighboring tidal constituents in the diurnal band while the frequencies f(M2) and 
f(S2) become the comparison frequencies for neighboring frequencies in the 
semidiurnal band. Extension of this procedure to longer and longer records eventually 
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Table 5.5. Record lengths to resolve main tidal constituents in the semidiurnal tidal band assuming a 
Rayleigh coefficient R - 1. Also listed are the comparison constituents and ratios of tidal potential to 
that of the principal semidiurnal constituent M2 

. . . . . . .  

Tidal Frequency Comparison Magnitude Record 
constituent (cph) constituent ratio length (h) 

M2 (principal 0.0805 
lunar) 
$2 (principal 0.0833 
solar) 
N2 (larger 0.0790 
lunar elliptic) 
K2 (luni-solar) 0.0836 

M2 

M2 

$2 

1 13 

0.465 355 

0.192 662 

0.029 4383 

Table 5.6. Record lengths to resolve main tidal constituents in the diurnal tidal band assuming a Rayleigh 
coefficient R - 1. Also listed are the comparison constituents and ratios of tidal potential to that of the 
principal semidiurnal constituent, M2 

. . . . . . . . . . . . . .  

Tidal Frequency Comparison Magnitude Record 
constituent (cph) constituent ratio length (h) 

KI (luni-solar) 0.0418 - 0.584 24 
O1 (principal 0.0387 K1 0.415 328 
lunar) 
P1 (principal 0.0416 K~ 0.193 4383 
solar) 
Q1 0.0372 O1 0.079 662 

Table 5.7. Record lengths to resolve main tidal constituents in the long-period tidal band assuming a 
Rayleigh coefficient R - 1. Also listed are the comparison constituents and ratios of tidal potential to 
that of the principal semidiurnal constituent, M2 
. . . . . .  . . . . . . . . . . . . . . . . .  

Tidal Frequency Comparison Magnitude Record 
constituent (cph) constituent ratio length (h) 

Msf (mixed 0.002822 Mf 0.015 
solar fortnightly) 
Mf (lunar 0.003050 - 0.172 
fortnightly) 
Mm (lunar 0.001512 Msm 0.091 
monthly) 
Msm (solar 0.001310 - 0.017 
monthly) 
Ssa (solar 0.000228 Sa 0.080 
semi-annual) 
S~ (solar 0.000114 - 0.013 
annual) 

. . . . . .  , , , ,, 

355 

4383 

764 

4942 

4383 

8766 
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Table 5.8. Hourly values of sea-level height (SLH) measured at Tofino, British Columbia (49~ 
125~ ' W) on the west coast of Canada starting 10 September 1986. Heights are in meters above the 
local datum 

n 1 2 3 4 2 6 7 8 9 10 11 
SLH 1.97 1.46 0.98 0.73 0.67 0.82 1.15 1.58 2.00 2.33 2.48 

n 12 13 14 15 16 17 18 19 20 21 22 
SLH 2.43 2.25 2.02 1.82 1.72 1.75 1.91 2.22 2.54 2.87 3.10 

n 23 24 25 26 27 28 29 30 31 32 
SLH 3.15 2.94 2.57 2.06 1.56 1.13 0.84 0.73 0.79 1.07 

where the elements  of D and y have units of meters. The solution z -  D - l y  is the 

vector 

A0 1.992m 
Al 0.186m 

z = A2 - 0.523 m (5.5.20) 
B1 - 0 . 5 7 4 m  
B2 -0 .604  m 

The results are summar ized  in Table 5.9. A plot of the original sea-level data and the 

fitted sea-level curve are presented in Figure 5.5.2. The s tandard deviation for the 
original record is 0.741 m while that for the fitted record is 0.736 m. For this short 
segment  of the data record, the sum of the two tidal consti tuents accounts for over 99% 
of the total variance in the record. As a comparison, we have used the full analysis 
package wi thout  inference to analyze 29 days of the Tofino sea-level record beginning 
at 2000 on 10 September  1986. The program finds a total of 30 constituents,  including 
the mean,  Zo, with the sum of the tidal constituents accounting for 98% of the original 
variance in the signal. The record mean for the month is 2.05 m, and the K~ and M2 

const i tuents  have ampli tudes of 0.286 and 0.986 m, respectively. As expected, these 
are quite different to the values derived on only 32 h of data (Table 5.9). Phases for the 

two const i tuents  for the 29-day records are 122.0 ~ and 12.5 ~ compared with 107.9 ~ and 
130.9 ~ for the same two consti tuents  based on the 32-h records (angles in both cases 
are measured  counterclockwise from the positive x axis). 

Table 5.9. Least-squares estimates of the amplitude and phase of the K1 and M2 tidal constituents for the 
32-h Tofino sea level starting at 2000, 10 September 1986. The mean is ~Ao. The last column, C'q, gives 
the constituent amplitudes for a more extensive analysis that used a 29-day (685 h) data segment that 
had the same start time as the 32-h segment used to derive Cq 

Frequency Period A q B q Cq C a 
q (cph) (h) (m) (m) (m) (m) 

0 - - 3.984 0 3.984 4.100 
1 0.042 24 0.186 -0.574 0.365 0.286 
2 0.081 12 0.523 -0.604 0.638 0.986 
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Figure 5.5.2. ttourly sea-level height (SLH) recorded at Tofino on the west coast of Vancouver Island 
(see Table 5. 7). The solid line is the original 32-h series; the dotted line is the S L H  series obtained from a 
least-squares fit of the main diurnal (K1, 0.042 cph) and main semidiurnal (M2, 0.081 cph) tidal 

frequencies to the mean-removed data (see Table 5.8). 

5.5.6 C o m p l e x  d e m o d u l a t i o n  

In many applications, we seek to determine how the signal characteristics at a specific 
frequency, co, change throughout the duration of a time series. For example, we might 
ask how the amplitude, phase, and orientation of the semidiurnal tidal current ellipses 
at different depths at a mooring location change with time. Wave packets associated 
with passing internal tides would be revealed through rapid changes in ellipse 
parameters at the M2 and/or $2 frequencies. The method for determining the temporal 
change of a particular frequency component for a velocity or scalar time series is 
called complex demodulation. 

A common technique for finding the demodulated signal is to fit the desired 
parameters to sequential segments of the data series using least-squares algorithms. 
The analysis requires that there be many more data points than frequency components 
and each segment must span at least one cycle of the frequency of interest. As with any 
least-squares analysis, the observations do not have to be at regular time intervals. 
Inputs to complex demodulation algorithms require specification of the start time of 
the first segment, the length of each segment, and the time between computation 
interval start times. Computation intervals may overlap, be end-to-end, or be inter- 
spersed with unused data. Following the least-squares analysis described under the 
section on harmonic analysis, the time increment between each estimate can be as 
short as one time step, At, thereby providing the maximum number of estimates for a 
given segment length, or as long as the entire record, thereby yielding a single 
estimate of the signal parameters. 

For each segment of current velocity data, the fluctuating component of velocity at 
frequency co can be expressed as 

u ( t ) - u ( t ) -  [ u ( t ) -  u(t)] + i [ v ( t ) -  v(t)] (5.5.21) 

= A + exp [i(cot + e+)] + A -  exp [-i(cot + e-)] 
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Figure 5.5.3. Complex demodulation at the inertial period of 12.73 h for the trajectory of a satellite- 
tracked drifter deployed in the Beaufort Sea in August 1988. (a) Original (solid line) and demodulated 

version (dashed line) of the drifter track. (Courtesy of Humfrey Melling.) 

component of rotation, and the roughly -6 .4  ~ per day drift in phase of the clockwise 
component of the current due to the changing latitude of the drifter relative to the 
reference latitude of 70~ 

5 . 6  S P E C T R A L  A N A L Y S I S  

Spectral analysis is used to partition the variance of a time series as a function of 
frequency. For stochastic time series such as wind waves, contributions from the 
different frequency components are measured in terms of the power spectral density 
(PSD). For deterministic waveforms such as surface tides, either the PSD or the energy 
spectral density (ESD) can be used. Here, power is defined as energy per unit time. The 
need for two different spectral definitions lies in the boundedness of the integral of 
signal variance for increasing record length. In practice, the term spectrum is applied 
to all spectral functions including commonly used terms such as autospectrum and 
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Figure 5.5.3.  Complex demodulation at the inertial period of 12.73 h for the trajectory of a satellite- 
tracked drifter deployed in the Beaufort Sea in August 1988. (b) Parameters of the demodulation over a 
20-day period of strong inertial motions. Top panel: phase of the clockwise (CW) rotary component 
(degrees). Remaining panels: amplitudes of the CW rotary, CCW rotary, and speed of the demodulated 

current. (Courtesy of Humfrey Metling.) 

power spectrum. The term cross-spectrum is reserved for the "shared" power between 
two coincident time series. We also distinguish between nonparametric and parametric 
spectral methods..Nonparametric methods, which are based on conventional Fourier 
transforms, are not data-specific while parametric techniques are data-specific and 
assign a predetermined model to the time series. In general, we use parametric 
methods for short time series (few cycles of the oscillations of interest) and non- 
parametric methods for long time series (many cycles of oscillations of interest). 

The word spectrum is a carry-over from optics. The colors red, white, and blue of 
the electromagnetic spectrum are often used to describe the frequency distribution of 
oceanographic spectra. A spectrum whose spectral density decreases with increasing 
frequency is called a "red" spectrum, by analogy to visible light where red corresponds 
to longer wavelengths (lower frequencies). Similarly, a spectrum whose magnitude 
increases with frequency is called a "blue" spectrum. A "white" spectrum is one in 
which the spectral constituents have near-equal amplitude throughout the frequency 
range. In the ocean, long-period variability (periods greater than several days) tend to 
have red spectra while instrument noise tends to have white spectra. Blue spectra are 
confined to certain frequency bands such as the low-frequency portion of wind-wave 
spectra and within the weather band (2 < period < 10 days) for deep wind-generated 
currents. 

In the days before modern computers it was customary to compute the spectrum of 
discrete oceanic data from the Fourier transform of the autocorrelation function using 
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a small number of lag intervals, or "lags". First formalized by Blackman and Tukey 
(1958), the autocorrelation method lacks the wide range of optional improvements to 
the computations and generalized "tinkering" permitted by more modern techniques. 
From a historical perspective, the autocorrelation approach has importance for the 
direct mathematical link it provides through the Wiener-Khinchin relations that link 
variance functions in the time domain to those in the frequency domain. Today, it is 
the spectral periodogram generated using the fast Fourier transform (FFT) or the 
Singleton Fourier transform that is most commonly used to estimate oceanic spectra. 

Other methods have been developed over the years as a result of fundamental 
performance limitations with the periodogram method. These limitations are: (1) 
restricted frequency resolution when distinguishing between two or more signals, with 
frequency resolution dictated by the available record length independent of the 
characteristics of the data or its signal-to-noise ratio (SNR); (2) energy "leakage" 
between the main lobe of a spectral estimate and adjacent side-lobes, with a resulting 
distortion and smearing of the spectral estimates, suppression of weak signals, and the 
need to use smoothing windows; (3) an inability to adequately determine the spectral 
content of short time series; and (4) an inability to adjust to rapid changes in signal 
amplitude or phase. Other techniques, such as the maximum entropy method (best 
suited to short time series) and the wavelet transform (best suited to event-like 
signals), are addressed in this chapter. 

Fundamental concepts: Several basic concepts are woven into the fabric of this 
chapter. First of all, the sample data we collect are subsets of either stochastic or 
deterministic processes. Deterministic processes are predictable, stochastic ones are 
not. Secondly, the very act of sampling to generate a time series of finite duration is 
analogous to viewing an infinitely long time series through a narrow "window" in the 
shape of a rectangular box-car function (Figure 5.6.1a). The characteristics of this 
window in the frequency domain can severely distort the frequency content of the 
original data series from which the sample has been drawn. As illustrated by Figure 
5.6.1(b), the sampling process results in spectral energy being "rippled" away from 
one frequency (the central lobe of the response function) to a wide number range of 
adjacent frequencies. The large side-lobes of the rectangular window are responsible 
for the leakage of spectral energy from the central frequency to nearby frequencies. 

A third point is that the spectra of random processes are themselves random 
processes. Therefore, if we are to determine the frequency content of a data series with 
some degree of statistical reliability (i.e. to be able to put confidence intervals on 
spectral peaks), we need to precondition the time series and average the raw periodo- 
gram estimates. Averaging can be done in the time domain by using specially designed 
windows or in the frequency domain by averaging together adjacent spectral 
estimates. Windows (which are discussed in detail in Section 5.6.6) suppress Gibbs' 
phenomenon associated with finite length data series and enable us to increase the 
number of degrees offreedom used in each spectral estimate. (Here, the term "degrees of 
freedom" refers to the number of statistically independent variables or values used in 
a particular estimate.) We can also improve spectral estimates by partitioning a time 
series into a series of segments and then conducting spectral analysis on the separate 
pieces. Spectral values in each frequency band for each piece are then averaged as a 
block to improve statistical reliability. The penalty for doing this is a loss in frequency 
resolution. The alternative--calculating a single periodogram and then smoothing in 
the frequency domain--suffers the same loss of frequency resolution for a smoothing 
that gives the same degrees of freedom. 
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Regardless of which averaging approach we choose, the results will be tantamount 
to viewing the data through another window in the frequency domain. Any smoothing 
window used to improve the reliability of the spectral estimates will again distort the 
results and impose structure on the data, such as periodic behavior, when no such 
structure may exist in the original time series. In addition, conventional methods 
make the implicit assumption that the unobserved data or correlation lag-values 
situated outside the measurement interval are zero, which is generally not the case. 
The smoothing window results in smeared spectral estimates. The more modern 
parametric methods allow us to make more realistic assumptions about the nature of 
the process outside the measurement interval, other than to assume it is zero or cyclic. 
This eliminates the need for window functions. The improvement over conventional 
F F T  spectral estimates can be quite dramatic, especially for short records. However, 
even then, there remain pitfalls which have tended to detract from the usefulness of 
these methods to oceanography. Each new method has its own advantages and 
disadvantages that must be weighed in context of the particular data set and the way it 
has been collected. For time series with low signal-to-noise ratio (SNR), most of the 
modern methods are no better than the conventional FFT approach. 

Means and trends: Prior to spectral analysis, the record mean and trend are generally 
removed from any time series (Figure 5.6.2). Unless stated otherwise, we will assume 
that the time series y( t )  we wish to process has the form y ' ( t ) = y ( / ) - y ( t )  where 

y ( t )  =Yo + c~t is the mean value and c~t is the linear trend (Yo and c~ are constants). If 
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Figure 5.6.2. Mean and trend removal for an artificial time series y(t). Here, Yo = -1.0, trend 
c~ = 0.025 and the fluctuating component, y', was obtained using a uniformly distributed random 
number generator. (a) Original time series, showing the linear trend; (b) Time series with the mean and 

linear trend removed. 

the mean and trend are not removed prior to spectral analysis, they can distort the 
low-frequency components of the spectrum. Packaged spectral programs often include 
record mean and linear trend removal as part of the data preconditioning. Nonlinear 
trends are more difficult to remove, especially since a single function may not be 
appropriate for the entire data domain. The latter may apply also to linear trends. 

The mean value removed from a record is not always the average for the entire 
record. For example, to examine interannual variability in the monthly time series of 
sea-level height, r/(tm), at Cristobal on the Caribbean end of the Panama Canal, 
Thomson et al. (1985) first calculated mean-monthly values ~7(tm)m for each month 
(e.g. the individual means for January, February, etc.). These mean monthly values, 
rather than the average value for the entire record, were then subtracted from the 
original data for the appropriate month to obtain monthly anomalies of sea level, 
~7/(tm) -- ~7(tm) -- ~7(tm)m. Trend removal was then applied to the monthly anomalies to 
obtain the final sea-level anomaly record. As a final comment, we note that certain 
records, such as those from moored near-surface transmissometers, will contain 
nonlinear trends that should be removed from the data record prior to spectral 
analysis. This must be done with care. Unless one has a justified physical model for a 
particular trend (including a linear trend), removal of the trend may itself add 
spurious frequency components to the de-trended signal. 
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Time-series data can originate with deterministic or stochastic processes, or a mixture 
of the two. Turbulence arising from eddy-like motions generated by strong tidal 
currents in a narrow coastal channel provides an example of mixed deterministic and 
stochastic processes. To see the difference between the two types of processes in terms 
of conventional spectral estimation, consider the case of a continuous deterministic 
signal, y(t). If the total signal energy, E, is finite 

CK) 

E -  / b(t)l 2 dt < 

--CK) 

(5.6.1) 

theny(t) is absolute-integrable over the entire domain and the Fourier transform Y(f) 
ofy(t) exists. This leads to the standard transform pair 

0(3 

Y ( / ) -  / y(t)e -i2~ dt (5.6.2a) 

OG 0 0  / 1/ 
y ( t ) -  Y( f )e  i2~ft df =Z-~ Y( f )e  i'~t dw 

- -  O C  - - f i X 3  

(5.6.2b) 

where e i i 27 r f i  ---- COS (27rft) + i s i n  (27rft), f is the frequency in cycles per unit time, and 
w = 27rf is the angular frequency in radians per unit time. The square of the modulus 
of the Fourier transform for all frequencies 

SE(f) - Y(f)Y*(f) - [Y(f)l 2 (5.6.3) 

is then the energy spectral density (ESD), SE0c), ofy(t). (As usual, the asterisk denotes 
the complex conjugate.) To see equation (5.6.3) that is an energy density, we use 
Parseval's theorem 

~X) OG 

at  / (5.6.4) 

which states that the total energy, E, of the signal in the time domain is equal to the 
total energy, f S E ( f ) d f ,  of the signal in the frequency domain. Thus, SE(f), is an 
energy density (energy per unit frequency) which, when multiplied by df, yields a 
measure of the total signal energy in the frequency band centered near frequency f. 
The "power" of a deterministic signal, E/T,  is zero in the limit of very long time series 
(T ~ ~ ) .  

Now, suppose that y(t) is a stationary random process rather than a deterministic 
waveform. Unlike the case for the finite energy deterministic signal, the total energy 
in the stochastic process is unbounded (the characteristics of the process remain 
unchanged over time) and functions of the form (5.6.2) do not exist. In other words, 
the Fourier transform method introduced earlier fails in the sense that the total 
energy, as defined by equation (5.6.1), does not decrease as the length of the time 



410 Data Analysis Methods in Physical Oceanography 

series increases without bound. To get around this problem, we must deal with the 
frequency distribution of the signal power (the time average of energy or energy per 
unit time, E/T) which is a bounded function. The basis for spectral analysis of 
random processes is the autocorrelation function Ryy(r)= E[y(t)y(t + r)]. Using the 
Wiener-Khinchin  relation, the power spectral density, S(/), becomes 

CX3 

S ( f ) -  / Ryy(T)e -i2~fr dy 
- -  O C  

(5.6.5a) 

For an ergodic random process, for which ensemble averages can be replaced by time 
averages, Ryy has the form 

T/2 

Ryy(r) = lim 1 f r ~  -T [y(t)y* (t + r)] at 

-T/2 

(5.6.5b) 

By definition, the energy and power spectral density functions quantify the signal 
variance per unit frequency. For example, in the case of a stationary random process, 
integration of S(f) gives the relation 

f +Af /2 

s 2 -  f S(f) df (5.6.6) 
J 

f -A l l2  

where s 2 is the integrated signal variance in the narrow frequency range Af = 
I f -  1/2Af, f + 1/2Af]. If we assume that the spectrum is nearly uniform over this 
frequency range, we find 

S 2 

S(f) ~ ~ (5.6.7) 
/V 

which defines the spectrum for a stochastic processes in terms of a power density, or 
variance per unit frequency. The product SOr)Af is the total signal variance within the 
frequency band Af centered at frequency f. 

At this point, there are several other basic concepts worth mentioning. First of all, a 
waveform whose autocorrelation function R(T) attenuates slowly with time lag, r, will 
have a narrow spectral distribution (Figure 5.6.3a) indicating that there are relatively 
few frequency components to destructively interfere with one another as r increases 
from zero. In the limiting case of only one frequency component, fa, we find 
R( r )  ,~ cos (2rrfaAt) and Fourier line spectra appear at frequencies +fa (Figure 5.6.3b). 
Because they consist of near monotone signals, tidal motions are highly autocorrelated 
and produce sharp spectral lines. In contrast, a rapidly decaying autocorrelation 
function implies a broad spectral distribution (Figure 5.6.4a) and a large number of 
frequency components in the original waveform. In the limit R(r)--+ 6(r) (Figure 
5.6.4b), there is an infinite number  of equal-amplitude frequency components in the 
waveform and the spectrum S(f) ---+ constant (white spectrum). 

Figure 5.6.5 provides an example of time-series data generated by the relation 
y(k) =A. cos(2rrnk/N)+c(k), where k - 0, ... , N is time in units of At = 1, 
n/NAt = 0.25 is the frequency in units of At -1 , and c(k) is a random number between 
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Figure 5.6.3. Examples of slowly decaying autocorrelation functions, R(T), as a function of time lag, T. 
Functions are normalized by their peak values. (a) The correlation function for a highly correlated signal 
leads to a relatively narrow power spectra density distribution, S(f); (b) the case for autocorrelation 
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Figure 5.6.4. As for Figure 5.6.3 but for rapidly decaying autocorrelation functions, R(T). (a) 
Correlation function for a weakly correlated signal leading to a broad power spectra density distribution. 
(b) The limiting case R(T) ~ 6(T) and the related spectrum S(f) = constant (a white spectrum). (From 

Konyaev, 1990.) 

-1  and +1. (We will often use this type of generic example rather than a specific 
example from the oceanographic literature. That way, readers can directly compare 
their computational results with ours. In the present case, if we set At = 1 day, then 
the time seriesy(k) could represent east-west current velocity oscillations of a synoptic 
(three to 10-day) period associated with wind-forced motions (cf. Cannon and Thom- 
son, 1996). Here, we setA = 1 and c(k) ~ 0 for mostly deterministic data (Figure 5.6.5a) 
and A = 0 for random data (Figure 5.6.5b). In the analysis, the record has been padded 
with zeros up to time k - 2N. For the mostly deterministic case, the noise causes 
partial decorrelation of the signal with lag, but the spectral peak remains prominent. 
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Figure 5.6.5. Autocovariance function C(T) and corresponding spectrum S(f) for the time series 
y(k) = Acos(27rnk/N) + c(k); k = O, ..., N, A t  = 1, n / N  = 0.25 is the frequency, and c(k) is a 
random number between - 1  and + 1. (a) C(T) and S(f) for A = 1 and c ~: 0 (mostly deterministic 
data); and (b) for A - 0 (purely random data). Records have been padded with zeros up to time 

k = 2N - 32. 
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For the purely random case, the spectrum resembles white noise but with isolated 
spectral peaks that one might mistake as originating with some physical process. The 
latter result is a good example of why we need to attach confidence limits to the peaks 
of spectral estimates (see Section 5.6.8). 

5.6.2 S p e c t r a  o f  d i s c r e t e  s er i e s  

Consider an infinitely long time series y(t~) = Yn sampled at equally spaced time 
increments tn = n A t ,  where At is the sampling interval and n is an integer, 
-cx~ < n < ~ .  From sampling theory, we know that a continuous representation of 
the discrete times seriesys(t), can be represented as the product of the continuous time 
series y(t) with an infinite set of delta functions, ~5(t), such that 

O c  

y,(t) = y(t) ~ ~5(t - nAt) 

= y ( t ) = ( t / A t )  
At 

where = is the "sampling function" and for which the Fourier transform is 

Y(f )  - / y(t)~(t - nAt )At  e -i2~ji dt 
l l - - - -OC  

- -  OC  

CX3 

- -  At ~ yne -i2rrfi 
n = - - C X 3  

(5.6.8b) 

In effect, the original time series is multiplied by a "picket fence" of delta functions 
E(t//Xt) ~ ~_~n~=_~ ~5(t- nat )  which are zero everywhere except for the infinitesimal 
rectangular region occupied by each delta function (Figures 5.6.6a, b). Comparison of 
the above expression with equation (5.6.2) shows that retention of the time step At 
ensures conservation of the rectangular area in the two expressions as At-- ,  0. 
Provided that the time series y(t) has a limited number of frequencies (i.e. is band- 

(a) (b) 

Time domain Frequency domain 

t -fN fN 

! 

f 

v 

f 

y~(t) = y (t) �9 E 

"7" . . : - -  l" , r ,  T ~ 
t f 

Figure 5.6.6. (a) A "'picket fence" of delta functions ~5(t - nat) used to generate a discrete data series 
from a continuous time series. (b) The Fourier transform (schematic only) of the different functions. 
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limited), whereby all frequencies are contained in the Nyquist interval 

--fN < fh < fN (5.6.9) 

in which f N -  1/(2At) is the Nyquist frequency, the energy spectral density 

B E ( f ) -  iF(f)[2 (5.6.10) 

is identical to that for a continuous function. Conversely, if Y(f) -r 0 for Jf] > fN then the 
sampled and original times series do not have the same spectrum for If[ <fN. The 
spectrum (5.6.10) obtained by Fourier analysis of discrete time series is called a periodo- 
gram spectral estimate, a term first coined by Schuster (1898) in a study of sunspot cycles. 

Real oceanographic time-series data are discrete and have finite duration, T = NAt .  
Returning to (5.6.8), this means that the summation is over a limited range n - 1 to N ,  
and the spectral amplitude for the sample must be defined in terms of the discrete 
Fourier transform 

N 

Yk - At ~ y n e  -i27rs 

n= l  (5.6.11) 
N 

= At ~yne-i27rkn/N; fk -- k /NAt ,  k - 0 .... , N 
n = l  

The frequencies fk are confined to the Nyquist interval, with positive frequencies, 
0 <_fh <_fN, corresponding to the range k - 0, ... , N/2 and negative frequencies, 
--fN <_ fk <_ 0, to the range k - N/2, ..., N. Since fN-k --fk, only the first N/2 Fourier 
transform values are unique. Specifically, Yk - YN-h so that we will generally confine 
our attention to the positive interval only. 

The inverse Fourier transform is defined as 
N - 1  1 Yk ei2~rkn/N, n 1 N (5.6.12) 

Yn N A t  k--0 

As indicated by equation (5.6.11), the Fourier transforms, Yk, are specified for the 
discretized frequenciesfk, wherefk = kfl and fl = 1/NAt = 1/T characterizes both the 
fundamental frequency and the bandwidth, Af, for the time series. The energy 
spectral density for a discrete, finite-duration time series is then 

SE(fk)--IYkl 2, k -  0, ..., N -  1 (5.6.13) 

and Parseval's energy conservation theorem (5.6.4) becomes 
N N - 1  

At ~ ~yn l  2 - -  Af  ~ IYkl 2 
n = l  k=0 

where we have used Af = 1~(NAt). A plot of jYkj 2 versus frequency, f~, gives the 
discrete form of the periodogram spectral estimate. 

Any geophysical data set we collect is subject to discrete sampling and windowing. 
As noted earlier, a time series of geophysical data, y(tn), sampled at time steps At can 
be considered the product of an infinitely long time series with a rectangular window 
which spans the duration (T = N A t )  of the measured data. The discrete spectrum 
S(fk) is the then the convolution of the true spectrum, S(f), with the Fourier transform 
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of the rectangular window (Figure 5.6.1b). Since the window allows us to see only a 
segment of the infinite time series, the spectrum S(fk) provides a distorted picture of 
the actual underlying spectrum. This distortion, created during the Fourier transform 
of the rectangular window, consists of a broadening of the central lobe and leakage of 
power from the central lobe into the side-lobes. (The "ripples" on either side of the 
central lobe in Figure 5.6.1(b) are side lobes.) A further problem is that the function 
Yk and its Fourier transform now become periodic with period N, although the 
original infinite time series y(t), of which our sample data are a subset, may have been 
nonperiodic. 

As noted in the previous section, the convergence of ]Y(f)12 to S(f) is smooth for 
deterministic functions in that the function iy1(f)]2, obtained by increasing the 
sample record length from T to T', would be a smoother version of IY(f)12 For 
stochastic signals, the function ]y,(,f)[2 obtained from the longer time series (T') is just 
as erratic as the function for the shorter series. The sample spectra of a stochastic 
process do not converge in any statistical sense to a limiting value as T tends to 
infinity. Thus, the sample spectrum is not a consistent estimator in the sense that its 
PDF does not tend to cluster more closely about the true spectrum as the sample size 
increases. To show what we mean, consider the spectrum of a process consisting of N 
= 400 random, normally distributed deviates (Gaussian white noise) sampled at 1-s 
intervals. (True white noise is a mathematical construct and is as physically 
impossible as the spike of an impulse function.) The highest frequency we can hope to 
measure with these data is the Nyquist frequency, fN = 0.5 cps. The spectra computed 
from 50 and then from 100 values of the fully white noise signal are presented in 
Figure 5.6.7(a). Also shown is the theoretical sample spectrum, corresponding to a 
uniform amplitude of 1.0. The shorter the sample used for the discrete spectral 
estimates, the greater the amplitude spikes in the power spectrum. This same 
tendency also is apparent in Table 5.6.1 which lists the means, variances, and mean 
square errors computed from various subsamples of the white noise signal. Here, 
mean square error (MSE) is defined as the variance plus bias of a,' ,timator.9(t)of the 
true signal y(t); that is 

MSE = El(9 _y)2] _ VIii + B 2 (5.6.14) 

where B - E[9] - y  is the bias of the estimator. The mean is lower in both the N - 50 
and N - 400 cases while it is greater in the case where N - 100 and is exactly 1.0 for N 
= 200. The variance increases as N increases, as does the MSE. However, if this were a 
purely random discrete process (discrete white noise), the sample spectral estimator of 
the variance would be independent of the number of observations. 

Now consider the spectrum of a second-order autoregressive process for a sample of 
N - 400 measured at 1-s increments (Figure 5.6.7b). (An autoregressive process of 
order p is one in which the present value ofy depends on a linear combination of the 

Table 5.6.1. Behavior of sample spectra of white noise as the record length is increased.(After Jenkins 
and Watts, 1968) 

Record length (N) 50 100 200 400 

Mean 0.85 1.07 1.00 0.95 
Variance 0.630 0.777 0.886 0.826 
Mean square error 0.652 0.782 0.886 0.828 
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Figure 5.6. 7. Power spectra of discrete signals and their theoretical values. Frequency in cycles per second 
(cps); spectra are in units of amplitude-squared/cps. (a) Power spectrum for the first half (N - 50) and 
full (N - 100) realization of a discrete normal white-noise process measured at 1-s intervals. (b) Power 
spectrum for one realization of a second-order autoregressive process of N - 400 values measured at 1-s 
increments, f N = 0.5 cps is the Nyquist frequency and the maximum bandwidth of the spectral resolution 

A f  = I / N A t  = 0.0025/s. (From Jenkins and Watts, 1968.) 
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previous p values of y. See Section 5.7.2.) The Nyquist frequency is again 0.5 cps and 
the maximum bandwidth of the spectral resolution, Af = l /NAt,  is equal to 
0.0025 cps. At the higher frequencies, the sample spectrum appears to be a good 
estimator of the theoretical spectrum (the smooth solid line), while for the lower 
frequencies there are large spikes in the sample spectrum which are not characteristic 
of the true spectrum. This misleading appearance is largely a consequence of the fact 
that the theoretical spectrum has most of its energy at the lower frequencies. In reality, 
the computed raw spectrum (i.e. with no smoothing) can fluctuate by 100% about the 
mean spectrum. The fluctuations are much smaller at higher frequencies simply 
because the actual spectral level is correspondingly smaller. 

The basic reason why Fourier analysis breaks down when applied to real time series 
is that it is based on the assumption of fixed (stationary) amplitudes, frequencies, and 
phases. Stochastic series are instead characterized by random changes in frequency, 
amplitude, and phase. Thus, our treatment must be a statistical approach that makes 
it possible to accommodate these types of changes in our computation of the power 
spectrum. 

5.6.3 Conventional spectral methods 

The two spectral estimation techniques founded on Fourier transform operations are 
the indirect autocorrelation approach popularized by Blackman and Tukey in the 
1950s and the direct periodogram approach presently favored by the oceanographic 
community. The fast Fourier transform (FFT) is the most common algorithm for 
determining the periodogram. The autocorrelation approach is mainly included for 
completeness. These methods fall into the category of nonparametric techniques 
which are defined independently of any specific time series. Parametric techniques, 
described later in this chapter, make assumptions about the variability of the time 
series and rely on the series for parameter determination. 

The following sections first describe the two conventional spectral analysis methods 
without providing details on how to improve spectral estimates. We wish to first 
outline the procedures for calculating spectra before describing how to improve the 
statistical reliability of the spectral estimates. Once this is done, we give a thorough 
description of windowing, frequency-band averaging, and other spectral improvement 
techniques. 

5.6.3.1 The autocorrelation method 

In the Blackman-Tukey method, the autocovariance function, Cyy(7) (which equals 
the autocorrelation function, Ryy(r), if the record mean has been removed), is first 
computed as a function of lag, 7, and the Fourier transform of Cyy(7) used to obtain 
the PSD as a function of frequency. An unbiased estimator for the autocovariance 
function for a data set consisting of N equally spaced values {Yl, Y2, ..., YN} is 

N - m  

l ~YnYn+m (5.6.15a) Cyy(Tm; N -  m) - N  - m n--l 

where m - 0, ... , M is the number of lags (Tin = mat) and M < N. In place of this 
estimator, some authors (cf. Kay and Marple, 1981) argue for the use of 



418 Data Analysis Methods in Physical Oceanography 

1 N - m  

= Zynyn+m Cyy(~-m; N) Nn=l (5.6.15b) 

which typically has a lower mean square error than Cyy(Tm; N - m) for most finite data 
sets. Because E[Cyy(Tm; N ) ] - - [ ( N -  m)/N]Cyy(7-m; N -  m), the function Cyy(T; N) is a 
biased estimator for the autocovariance function. Despite this, we will often use the 
relation (5.6.15b) for the autocovariance function since it yields a power spectral 
density (PSD) that is equivalent to the PSD obtained from the direct application of 
the FFT,  as discussed in the next section. The weighting (N - m)/N acts like a 
triangular (Bartlett) smoothing window to help reduce spectral leakage. We will use 
equation (5.6.15a) when we want a "stand-alone" unbiased estimator of the covariance 
function. 

The one-sided power spectral density, G~, for an autocovariance function with a 
total of M lags is found from the Fourier transform of the autocovariance function 

M 

Gk - 2At Z CyY(7-m)e-i27rkm/M' k - O, ..., (M/2) (5.6.16a) 
m--0  

where Tm- mat  and 2 A t -  1/fN. Since Cyy(Tm) is an even function, the spectrum of 
{Yn} can be calculated from the cosine transform I 2 m] 

Gk - 2At Cyy(O) -Jr- 2 Z Cyy(7"m)COS , k - 0, ..., (M/2) (5.6.16b) 
m--1 

where Gk = 2Sk is centered at positive frequencies fh = k /NAt  and the Nyquist 
interval 0 <fk <fu  is divided into N/2 segments (N is even). For the two-sided 
spectrum, Sk, the first (N/2) + 1 frequencies are identical to those for the one-sided 
spectrum and correspond to positive frequencies in the range 0 <_fk <fN. The last 
( N / 2 ) - I  spectral values for the two-sided spectral density, defined for 
k = (N/2) + 1, (N/2) + 2, ..., N -  1, correspond to spectral density estimates for 
negative frequencies in the range -fN <fk < 0. 

The solid line in Figure 5.6.8 shows spectra of monthly mean sea surface 
temperatures derived from the cosine transform using the Blackman-Tukey auto- 
correlation method for the version (5.6.15b) of the autocovariance function. The 
temperature data span the 36-month period from January 1982 to December 1984 for 
Amphitrite Point (Table 5.6.2). Since, in the next section, we wish to compare these 
spectra directly with those derived from the data series using a packaged FFT routine 
(the dashed curve in Figure 5.6.8), the lags were computed for the first 32 (25) points 
only, four fewer points than used in the Blackman-Tukey approach. In this case, 
extending the lag correlation beyond 10-20% of the data, as recommended earlier, is a 
necessity if we are to obtain reasonable estimates of the spectra. As expected, results 
reveal a strong spectral peak centered near, but not at, the annual frequency ( f -  1.0 
cycles per year = 0.083 cpmonth). There are too few data to enable us to accurately 
resolve the location of the frequency peak. In the present example, all spectral 
estimates are positive. However, the autocorrelation method can yield erroneous 
negative spectra for weak frequency components when there are gaps in the data 
record. 
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Figure 5.6.8. Spectra (~ (cpm - cycles per month) versus frequency (per month) for monthly 
mean sea surface temperatures collected at a coastal station in the northeast Pacific for the period 
January 1982 to December 1984 (cf. Table 5.6.2). (a) The solid line is the unsmoothed spectrum from the 
Blackman-Tukey autocorrelation method (the cosine transform of the autocovariance function 
(5.6.15b)); dashed line is the unsmoothed spectrum from the FFT method based on the first 25 (= 

32) data values. Spectral peaks span the annual period (f - 0.083/month). 

Table 5.6.2. Monthly mean sea surface temperatures SST  (~ at Amphitrite Point (48~ , N, 
125~ ' W) on the west coast of Canada for January 1982 through December 1984 

Year 1982 
n 1 2 3 4 5 6 7 8 9 10 11 12 
SST 7.6 7.4 8.2 9.2 10.2 11.5 12.4 13.4 13.7 11.8 10.1 9.0 

Year 1983 
n 13 14 15 16 17 18 19 20 21 22 23 24 
SST 8.9 9.5 10.6 11.4 12.9 12.7 13.9 14.2 13.5 11.4 10.9 8.1 

Year 1984 
n *~ 25 26 27 28 29 30 31 32 33 34 35 36 
SST 7.9 8.4 9.3 9.9 11.0 11.1 12.6 14.0 13.0 11.7 9.8 8.0 

We emphasize  that the spectra in Figure 5.6.8 have been constructed without  any 
averaging or windowing. This means that each spectral estimate has the min imu m 
possible two degrees of f reedom so that the error in each estimate is equal to the value 
of the estimate itself. Some form of averaging is needed if we are to place confidence 
limits on our spectra (see Sections 5.6.6 and 5.6.7). The two spectra are slightly 
different because the record used for the F F T  method is shorter than that used for the 

autocovariance method. 

5.6.3.2 The periodogram method  

The preferred method for est imating the power spectral density of a discrete sample 
{Yl, Y2, . . . ,  YN} is the direct or per iodogram method. Instead of first calculating the 
autocorrelat ion function, the data are t ransformed directly to obtain the Four ier  
components  Y(f) using (5.6.11). To help avoid end effects (Gibbs' phenomenon)  and 
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wrap-around problems, the original time series can be padded with K <_ N zeros after 
the mean has been removed from the time series. The padding will also increase the 
frequency resolution of the periodogram (see Section 5.6.9). Although use of K - N 
zeros is not recommended for computational reasons, it has one advantage: The N-lag 
covariance function obtained from the inverse Fourier transform of the 2N-point 
power spectral density is identical to the N-lag covariance function (5.6.15b). As with 
the autocorrelation method, improvements in the statistical reliability of the spectral 
estimates would be provided by "windowing" the time series prior to spectral 
estimation or by averaging over the raw periodogram estimates over adjacent 
frequency bands (see Sections 5.6.6 and 5.6.7). 

The two-sided power spectral (or autospectral) density for frequency f in the 
Nyquist interval -1 / (2At )  _<f _< 1/(2At) and a padding of K zeros is 

Syy( f )  - 
1 N + K -  1 

At ~ yne 
(N + K)At  

n=O 

1 j2 
(N + g ) A t  IY(f) 

2 

- i2 7rfn At 

(5.6.17a) 

while the one-sided power spectral density for the positive frequency interval only, 
0 < f  <_ 1/(2At), is 

2 12 Gyy(f) - 2SyyO c) - (N + K)At  IY(f) (5.6.17b) 

Division by At transforms the energy spectral density of (5.6.13) into a power spectral 
density, Syyq). 

Evaluation of (5.6.17a) using the fast Fourier transform defines Y([) in terms of the 
discrete Fourier transform estimates, Y(fk) = Yk, where the f~ form a discrete set of 
(N+K)/2 equally spaced frequencies s~ = +k/[(N +K)At],  k = 0, 1, ..., 
[ ( N + K ) / 2 ] -  1 in the Nyquist interval, - 1 / 2 A t  <_s~ <_ 1/2At. The case k - 0 
represents the mean component. The two-sided PSD is then 

1 111012 k - 0  Syy(O) - (N + K)At  ' 

Syy (fi ) - 

1 [ 2  2] 
(N + K)At  IYkl + IYN+K-kl , k -- 1, ..., 

(N + K) 
- 1  (5.6.18a) 

Syy OVN ) - -  Syy  Of(N+K) /2_k  ) - -  
1 2 

(N + K)At  IY(N+K)/21 

and the one-sided PSD is 

G y y ( O )  --- 
1 2 

(N + K)At  ]Y~ k = 0  

k - (N + K) 
2 
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2 12 (N + K) 
Gyy(fk) -- (N + K)At  IYk ' k - 1, ..., 2 - 1 (5.6.18b) 

1 12 
Gyy ( f J )  -~- Gyy OV(N+K)/2_k) - -  (N + K)At  IY(N+K)/2 ' 

k = (N + K) 
2 

Multiplication of SyyO c) =--Sk (or Gk) by the bandwidth of the signal Af = 
1/(N + K)A t  gives the estimated signal variance, cry, in the kth frequency band; i.e. 
a~ = S' k - SkAf  . The summation 

N + K -  1 N + K -  1 

Z Sk'--  Z SkAf  (5.6.19) 
n = 0  n = 0  

gives the variance and total power of the signal. The quantity 

, 1 [lgk[2 
Sk = [(N + K)At] 2 +IYN+K-kl2] 

_ 1 N+K-1 
- - ( N  + K) 2 Z Lyne-iZ~rfnAtl 2 

n = 0  

(5.6.20) 

is often computed as the periodogram. However, this is not correctly scaled as a power 
spectral density but represents the "peak" in the spectral plot rather than the "area" 
under the plot of Sk versus Af. The representation (5.6.20) is sometimes useful 
although most oceanographers are more familiar with the power spectral density form 
of the periodogram. It bears repeating that the use of Fourier transforms assumes a 
periodic structure to the sampled data when no periodic structure may actually exist 
in the time series. That is, the FFT of a finite length data record is equivalent to 
assuming that the record is periodic. We again note that autospectral functions are 
always real so that Syy(fk) -- Syy(2fN --fk), and the one-sided autospectral periodogram 
estimate becomes 

Gyy ( f k ) - 2S~ = 2 2 [(N + K)At] 2 IY(fk)l (5.6.21) 

Until the 1960s, the direct transform method first used by Schuster (1898) to study 
"hidden periodicities" in measured sun-spot numbers was seldom used due to 
difficulties with statistical reliability and extensive computational time. The intro- 
duction of the first practical FFT algorithms for spectral analysis (Cooley and Tukey, 
1965) greatly reduced the computational time by taking advantage of patterns in 
discrete Fourier transform functions. Problems with the statistical reliability of the 
spectral estimates are resolved through appropriate windowing and averaging 
techniques which we discuss in Sections 5.6.6 and 5.6.7. Figure 5.6.8 compares the 
unsmoothed periodogram spectral estimate for the monthly mean sea surface 
temperature data at Amphitrite Point (Table 5.6.2) with the corresponding spectrum 
obtained from the Blackman-Tukey method. As mentioned earlier, the FFT requires 
data lengths equal to powers of 2 so that we have shortened the series to 25 = 32 
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rectangular segment of the spectral curve is equal to a pseudo-variance 

L+af /2 

02, (fc) --  / log [Syyr df (5.6.25) 
f~-Af /2 

Although log spectra plots have an appealing shape, the integral (5.6.25) is certainly 
not variance-preserving. To preserve the signal variance, cr2~), under the spectral 
curve, we need to  plotfSyy(f) versus log(f) (Figure 5.6.9b). Replacing dfin (5.6.25) with 
d[log(f)], the true variance-preserving form of the spectrum becomes 

fc+Af /2 f +Af /2 

O'2 (fc) -- S SSyy(f)d[ log 0c)] - / S y y r  i (5.6.26) 
fc-Af /2 f< -Af /2 

where we have used the fact that d[log(f)] - diff. Equation (5.6.26) gives the true 
signal variance within the band Af. In particular, ifSyy(f) ~. Sc is nearly constant over 
the frequency increment Af, then c r2~)~  ScAf is the signal variance in band Af 
centered at frequencyf~. In this format, there is a clear spectral peak a t f  = 0.25 cycles 
per unit time that is associated with the term cos (2wnk/N) in the original analytical 
expression. 

r . ~  

em 
0 

-I 

-2  

-3  

f = 0.25 

(a) 

. . . 

0 0.1 0.2 0.3 0.4 0.5 

F r e q u e n c y  Of) 

2 . 0  - -  

1.5 B 

1.0 - 

' ~  0 . 5 -  

0 -  

-0 .5  
-2 .0  

(b) 

f = 0.25 

1 I I I 
-1.5 - I . 0  -0.5 0 

L o g  f r e q u e n c y  (,f) 

Figure 5.6.9. Two common types of spectral plot derived for the time series y(k) = A cos(~Trnk/N) 
+c( k) (see Figure 5.6.5). (a) A plot of log power spectral density, log[Soy60], versus frequency, f," (b) A 

variance-preselz, ing plot, f. (I5',/:/(f)] versus log(f). 
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5.6.3.5 The chi-squared property of spectral estimators 

Throughout this chapter, we have claimed that each spectral estimate for maximum 
frequency resolution, l/T, obtained from Fourier transforms of stochastic time series 
have two degrees of freedom. We now present a more formal justification for that 
claim for discrete spectral estimators by showing that each estimate is a stochastic chi- 
square variable with two degrees of freedom (i.e. there are two independent squares 
entering the expression for the chi-square variable). Consider any stochastic white 
noise process r/(t), for which E[r/(t)] = 0. The Fourier components are 

N - 1  

A(f) = ~ ~7(nAt) cos (2rrfnAt) 
n = - N  

N - 1  

BOc)- Z ri(nAt) sin (2rcfnAt) 
n = - N  

(5.6.27) 

where as usual, - 1 / ( 2 A t )  _<f _< 1/(2At), and it follows that E[A(I)] = 0 = E[B(f)]. 
Thus, at the harmonic frequencies fk - k / N A t ,  the variance is 

N - 1  

2 2 (2rrj~n At) V[A(/~)] = E[A20~)] = % Z cos 
n = - N  

1 2 -~N%, k -  +l,  +2, ..., + ( N - 1 )  

-- No'2r/, k - 0, - N  

(5.6.28a) 

Similarly 

V [ B ( j ~ ) ]  1 2 -~N%, k =  +l, +2, ..., + ( N - 1 )  

= 0, k - 0, - N  
(5.6.28b) 

When k # j ,  the covariance is 

N-1  

2 (2rrj~nAt) cos (2rrfynAt) -- 0 - Z cos 
n- '--N 

(5.6.29a) 

and 

C[A(fk), B(f j ) ] -  0 (orthogonality condition) (5.6.29b) 

Because A(fk) and B(fk) are linear functions of normal random variables, AOCk) and 
B(fk) are also distributed normally. Hence, the random variables 

A(s 2 Za(s 2 

B(fk) 2 2B(fk) 2 
(5.6.30) 

are each distributed as X~, which is a chi-square variable with one degree of freedom. 
Since the normal distributions A05~) and B(fk) are independent random variables, 

the sum of their squares 
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2 2 )2__ 2 
a2 [AOCk) + B(fk ] Atcr2Syy(fk) (5.6.31) 

is distributed as X22, which is chi-square variable with two degrees of freedom. Here, 
Syy~k) is the sample spectrum. Thus 

E[2Syy(fk)] 
Ata 2 

= 2 (5.6.32) 

and 

2At (5.6.33) 

which is the spectrum. At the harmonic frequencies (set by the record length), the 
sample spectrum is an unbiased estimator of the white-noise spectrum of r/(t). Also, at 
these frequencies, the variance of the estimate is constant and independent of sample 
size. This explains the failure of the sample estimates of the variance to decrease with 
increasing sample size. We remark further that, even if r/(t) is not normally 
distributed, the random variables A OCk) and B(fk) are very nearly normally distributed 
by the central limit theorem. Hence, the distribution of the Syy(f) will be very nearly 
distributed as X~ regardless of the PDF of the ~7(t) process. 

5.6.4 Spectra of vector series 

To calculate the spectra of vector time series such as current and wind, we first need to 
resolve the data into orthogonal components. Spectral analysis is then applied to the 
combined series of components and the results stored as a complex quantity in the 
computer. Raw data are recorded as speed and direction by rotor-type meters and as 
orthogonal components by acoustic and electromagnetic meters. The usual procedure 
is to convert recorded time series to an earth-referenced Cartesian coordinate system 
consi~ing of two orthogonal horizontal components and a vertical component. In the 
open ocean, horizontal velocities typically are resolved into components of eastward 
(zonal; u) and northward (meridional; v) time series, whereas in the coastal ocean it is 
preferable to resolve the vector components into cross-shore (u') and longshore (v') 
components through the rotation 

( u ' ) (  cos0 s i n 0 )  ( u )  (5 6.34a) 
v' - s i n 0  cos0 v 

or 

u' = u cos 0 + v sin 0 

v' -- -u  sin 0 + v cos O 
(5.6.34b) 

where the angle 0 is the orientation of the coastline (or the local bottom contours) 
measured counterclockwise from the eastward direction (Figure 5.6.10). Alternatively, 
one can let the current data define O as the direction of the major axis obtained from 
principal component analysis; that is, the axis which maximizes the variance in a 
scatter plot of u versus v (see Figure 4.3.1). 
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North 

v 

v '  

u' 

u 

East 

Coast 

Figure 5.6.10. Cross-shore (u') and longshore (v') velocity components in a Cartesian coordinate system 
rotated through a positive (counterclockwise) angle from the eastward (u) and northward (v) directions. 

In coastal regions, the principal axis is usually closely parallel to the coastline. For 
studies of highly circularly polarized motions, such as inertial waves and tidal currents, 
resolution into clockwise and counterclockwise rotary components is often more useful. 
The choice of representation depends on the preference of the investigator and the type 
of process being investigated. More will be said on this subject in Section 5.6.4.2. 

5.6.4.1 Cartesian component rotary spectra 

The horizontal velocity vector can be represented in Cartesian coordinates as a 
complex function w(t) whose real part, u(t), is the projection of the vector on the zonal 
(or cross-shelf) axis and whose imaginary part, v(t), is the projection of the vector on 
the meridional (or longshelf) axis (Figure 5.6.11) 

w(t) = u(t) + iv(t) (5.6.35) 

(The use of vector w(t) follows the convention of Gonella (1972), Mooers (1973) and 
others in their discussion of rotary spectral analysis and is not to be confused with the 
weights w(t) used in the sections on data windowing or the vertical component of 
velocity. Gonella (1972) used Ul and u2 for the two velocity components.) A complete 
description of the time variability of a three-dimensional vector at a single point 
consists of six functions of frequency: Three autospectra for the three velocity 
components and three cross-spectra. For the two-dimensional vectors considered in 
this section, there are two autospectra and one cross-spectrum. The discrete Fourier 
transform, W ( f k )  --  U ( f k )  + iVOCk), (fk --  k /NAt ,  k = 1, ..., N; k = 0 is the mean flow) 
is 

N - 1  

W(fk) -- At ~ w(t)e -i27rkn/N 
n = 0  
:v-I (5.6.36) 

= At ~ [u(t) + iv(t)]e -i2~kn/N 
n : 0  
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Imaginary 
axis 
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Real axis 

W = R + i v  

427 

Figure 5.6.11. Horizontal velocity, w, represented as a complex vector w = u + iv with components 
(u, v) along the real and imaginary axis, respectively. 

where U(fk) and V(fh) are the Fourier transforms of u(t) and v(t), respectively. If the 
original record is separated into M blocks of length N', where N = M N '  is the total 
record length if no overlapping of segments is used, the spectral density function is 
given in terms of the number of segments used to form the block-averaged, one-sided 
autospectrum (0 _<f~ < ~ )  

2 M 

Gww ~ )  - N A t  ~ ]Wm (fk)l 2 
m=l 

2 k =g,/k----- ~ {[gRm(fk)]2 + [glm~)] 2 } 
m=l 

--2--~~-~{[eRm(f~ ) - VIm(f~)]2+[elm(f~)+ VRm(fk)] 2 } 
N A t  ,~= 1 

(5.6.37) 

wheref~ - k / N ' A t ,  k = 0, 1, ..., N ' / 2  (k = 0 is the mean flow) and for FFT analysis, 
N' = 2p (positive integer p), and where the subscripts R and I stand for the real and 
imaginary parts of the given Fourier components. 

5.6 .4 .2  R o t a r y  componen t  spectra 

Rotary analysis of currents involves the separation of the velocity vector for a specified 
frequency, ~, into clockwise and counterclockwise rotating circular components with 
amplitudes A-,  A + and relative phases 0-, 0 +, respectively. Thus, instead of dealing 
with two Cartesian components (u, v) we deal with two circular components 
(A-, 0 - ;A +, 0+). Several reasons can be given for using this approach: (1) the 
separation of a velocity vector into oppositely rotating components can reveal 
important aspects of the wave field at the specified frequencies. The method has 
proven especially useful for investigating currents over abrupt topography, wind- 
generated inertial motions, diurnal frequency continental shelf waves, and other forms 
of narrow-band oscillatory flow; (2) in many cases, one of the rotary components 
(typically, the clockwise component in the northern hemisphere and counterclockwise 
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component in the southern hemisphere) dominates the currents so that we need only 
deal with one scalar quantity rather than two. Inertial motions, for example, are 
almost entirely clockwise rotary in the northern hemisphere so that the counter- 
clockwise component can be ignored for most applications; (3) many of the rotary 
properties, such as spectral energy S- (~)  and S +(~o) and rotary coefficient, r(~), are 
invariant under coordinate rotation so that local steering of the currents by bottom 
topography or the coastline are not factors in the analysis. 

The vector addition of the two oppositely rotating circular vectors (Figure 5.6.12a, b) 
causes the tip of the combined vector (Figure 5.6.12c) to trace out an ellipse over one 
complete cycle. The eccentricity, e, of the ellipse is determined by the relative 
amplitudes of the two components. Motions at frequency w are circularly polarized if 
one of the two components is zero; motions are rectilinear (back-and-forth along the 
same line) if both circularly polarized components have the same magnitude. In rotary 
spectral format, the current vector w(t) can be written as the Fourier series 

J w(t) = u(t) + ~ Uk cos (~kt - ~k) + i + ~ Vk cos (,~kt - 0k) 
k=l k=l 

(5.6.38) N 
= [u(t) + iv(t)] + ~-~[Uk cos (~okt -- cbk) + iVk cos (~okt - 0k)] 

k=l 

in which u(t)+ iv(t)is the mean velocity, wk = 27rfk = 27rk/NAt is the angular fre- 
quency, t (= nat) is the time and (Uk, l/k) and (~k, 0k) are the amplitudes and phases, 
respectively, of the Fourier constituents for each frequency for the real and imaginary 
components. Subtracting the mean velocity and expanding the trigonometric 
functions, we find 

(a) 
~§ (b) 

/ -  

V 

Semi-major 
Sense of rotation ~ - -  axis 

(c) 

I Semi-minor 
axis 

Figure 5.6.12. Current ellipses formed by the vector addition of two oppositely rotating vectors. (a) 
Clockwise component (.J-) and (b) counterclockwise component (~o+) with amplitudes A - a n d  A +, 
respectively. (c) General case of elliptical motion with major axis tilted at an angle ~ counterclockwise 

from east. c- and ~+ (not shown) are the angles of the two circular components at time t = O. 
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Station SS2 (40 M) 
Beaufort sea (depth 170 m) 
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Figure 5.6.13. Rotary current spectra for hourly currents measured at 40-m depth in the Beaufort Sea, 
Arctic Ocean (water depth - 170 m). Peaks are at the diurnal (D) and semidiurnal (SD) tidal 
frequencies. Frequency resolution is 0.0005 cph and there are 112 degrees of freedom per spectral band. 
Vertical bar gives the 99% level of confidence. (a) One-sided rotary spectra, S-(f) and S+(J), versus f 

for positive frequency, f," (b) two-sided rotary spectra, S(f~ + ) - S  + and S(f~-)=S- versus logf for positive 
and negative frequencies, f~. (Courtesy E. Carmack, A. Rabinovich, and E. Kolikov.) 
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Plots of rotary spectra are generally presented in two ways. In Figure 5.6.13(a), both 
S -  and S § are plotted as functions of frequency magnitude, ~l >- 0, with solid and 
dashed lines used for the clockwise and counterclockwise spectra, respectively. In 
Figure 5.6.13(b), we use the fact that clockwise spectra are defined for negative 
frequencies and counterclockwise spectra for positive frequencies. The spectra 
S0C~ +) and S0Ch -)  used in Figure 5.6.13(a) are then plotted on opposite sides of zero 
frequency. In these spectra, peak energy occurs at the diurnal and semidiurnal 
periods. The predominantly clockwise rotary motions at semidiurnal periods suggest a 
combination of tidal and near-inertial motions (at this latitude the inertial period is 
close to the semidiurnal tidal period). 

Another useful property is the rotary coefficient 

r(o3) - S~- - S~- (5.6.45) 
s;  + s;  

which ranges from r = -1  for clockwise motion, to r = 0 for unidirectional flow, to r = 
+1 for counterclockwise motion. The rotary nature of the flow can change con- 
siderably with position, depth and time. As indicated by Figure 5.6.14, the observed 
diurnal tidal currents over Endeavour Ridge in the northeast Pacific change from 
moderately positive to strongly negative rotation with depth. In contrast, the 
semidiurnal currents change from strongly negative near the surface to strongly 
rectilinear at depth. (Data, in this case, are from a string of current meters moored for 
a period of nine months in the northeast Pacific.) We remark that the definition 
(5.6.45) differs in sign from that of Gonella (1972) who used S ~ -  S~- rather than 
S~- -  Sk- in the numerator. Because many types of oceanic flow are predominantly 
clockwise rotary in the northern hemisphere, Gonella's definition has the advantage 
that clockwise rotating currents have positive rotary coefficients. However, we find 
Gonella's definition confusing since clockwise motions, which are linked to negative 
frequencies, then have positive rotary coefficients. 

(a) 
r 

0 - 1 . 0  0 1.0 1.0 
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(b) 
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Figure 5.6.14. Rotary coefficient, r(~), as a function of depth for current oscillations in (a) the diurnal 
frequency band (~/27r .~ 0.04 cph) and (b) the semidiurnal band (oJ/2~ ~ 0.08 cph). (From Allen and 

Thomson, 1993.) 
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5.6.4.3 Rotary spectra (via Cartesian components) 

Gonella (1972) and Mooers (1973) present the rotary spectra in terms of their 
Cartesian counterparts and provide a number of rotational invariants for analyzing 
current and wind vectors at specified frequencies. Specifically, the one-side auto- 
spectra for the counterclock~vise (CCW) and clockwise (CW) rotary components of the 
vector w(t) = u(t) + iv(t) are, in terms of their Cartesian components 

G(f~-) - �89 + GvvOCk) + QuvCfk)], fk >_ 0 (CCW component) (5.6.46a) 

G(fff ) - �89 + Gvv(fk) --Quv(fk)], fk <_ 0 (CW component) (5.6.46b) 

where Guu(fk)and Gvv(fk) are the one-sided autospectra of the u and v Cartesian 
components of velocity and Quv(fk) is the quadrature spectrum between the two 
components, where 

Quv(fk) = -Quv(-f~) = (UlkV2k- Vlke2k) (5.6.47) 

As defined in Section 5.8, the spectrum can be written in terms of co-spectrum (real 
part) and quadrature spectrum (imaginary part) 

Guv(fk) = Cuv(fk) -- iQuv(fk) (5.6.48) 

5.6.5 Effect of sampling on spectral estimates 

Spectral estimates derived by conventional techniques are limited by two fundamental 
problems: (1) the finite length, T, of the time series; and (2) the discretization using 
the sampling interval, At. The first problem is inherent to all real datasets while the 
second is associated with finite instrument response times and/or the need to digitize 
the time series for purposes of analysis. 

Irrespective of the method used to calculate the power spectrum of a waveform, the 
record duration T = N A t  and sampling increment At impose severe limitations on the 
information that can be extracted. Ideally, we would like to sample rapidly enough 
(small At) that no significant frequency component goes unresolved. Th i s  also 
eliminates aliasing problems in which unresolved spectral energy at frequencies higher 
than the Nyquist frequency is folded back into lower frequencies. At the same time we 
wish to record for a sufficiently long period (large N) that we capture many cycles of 
the lowest frequency of interest. Long-term sampling also enables us to better resolve 
frequencies that are close together and to improve the statistics (confidence intervals) 
for spectral estimates. In reality, most data series are a compromise based on the 
frequencies of interest, the response limitations of the sensor, and cost. The choices of 
the sampling rate and the record duration are tailored to best meet the task at hand. 

5.6.5.1 Effect of  finite record length 

As noted earlier, we can think of a data sample {y(t)} of duration T = N A t  as the 
output from an infinite physical process {y'(t)} viewed through a finite length window 
(Figure 5.6.1). The window has the shape of a "box-car" function W(tn)=Wn = 
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w(nAt) which has unit amplitude and zero phase lag over the duration of the data 
sequence but is zero elsewhere. That is y(t,) -W(tn)f(t ,)  where 

w, -1.O, n - 0 , . . . , N - 1  
wn-O, f o r n > _ N , n < 0  (5.6.49) 

Since it is truncated, the dataset has endpoint discontinuities which lead to Gibbs' 
phenomena "ringing" and the ripple effects in the frequency domain. The discrete 
Fourier transform Y(D of the truncated seriesyn =y(nAt) is 

O O  

Y(f) = Z WnY'ne-i2~rfnZXt (5.6.50) 
R - - -  ~ ( X )  

In frequency space, Y(J) is the convolution (written as ,) of the Fourier transform of 
the infinite data set, yt(f), with the Fourier transform W(/) of the function w(t). That 
is 

O C  

Y(f)=  / Y' ( f ' )W' ( f - f ' )d f  
[ b  

(5.6.51) ~ J  

= v ' l f ) ,  w ( f )  

where for a box-car function 

sin (TrfN A t) 
W(f) - T exp (i~-f/') (TrfNAt) 

= T exp (iTrfT) sinc (TrfNAt) 
(5.6.52) 

and sinc (x)=  sin (x)/x. It is the large side-lobes or ripples of the sinc function 
(Figure 5.6.15) which are responsible for the leakage of spectral power from the main 
frequency components into neighboring frequency bands (and vice versa). In parti- 
cular, Y00 for a specific frequency f = fo is spread to other frequencies, f, according to 
the phase and amplitude weighting of the window function. Leakage has the effect of 

t 

both reducing the spectral power in the central frequency component and conta- 
minating it with spectral energy from adjacent frequency bands. Those familiar with 
the various mathematical forms for the Dirac delta function, ~5(f), will recognize the 
formulation 

r lir~ [,sinTrfAt(~-fAt)]j 

Thus, as the frequency resolution increases (i.e. f ~ 0), Y0 c) ~ Y'0C). 
In addition to distorting the spectrum, the box-car window limits the frequency 

resolution of the periodogram, independently of the data. The convolution 
Y' ( f ) ,  W(f) means that the narrowest spectral response of the resultant transform 
is confined to the main-lobe width of the window transform. For a given window, the 
main-lobe width (the width between the -3  dB levels of the main lobe) determines the 
frequency resolution, Af, of a particular window. For most windows, including the 
box-car window, this resolution is roughly the inverse of the observation time; 
Af ,~ 1/ T = 1~NAt. 
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Figure 5.6.15. The function sinc (x) = sin (x)/x showing the large side-lobes which are responsible for 
leakage of  spectral power from a given frequency to adjacent frequencies. 

5.6.5.2 Aliasing 

Poor discretization of time-series data due to limitations in the response time of the 
sensor, limitations in the recording and data storage rates, or through post-processing 
methods may cause aliasing of certain frequency components in the original waveform 
(Figure 5.6.16a). An aliased frequency is one that masquerades as another frequency. 
In Figure 5.6.16(b), for example, the considerable tidal energy at diurnal and 
semidiurnal periods (1 and 2 cpd) is folded back to lower frequencies of 0.07 and 
0.10 cpd that are nowhere near the original frequencies. For a specific sampling 
interval, it becomes impossible to tell with certainty which frequency out of a large 
number of possible aliases is actually contributing to the signal variability. This leads 
to differences in the spectra between the continuous and discrete time series. Since we 
use the spectra of the discrete series to estimate the spectrum of the continuous series, 
the sampling interval must be properly selected to minimize the effect of the aliasing. 
If we know from previous analysis that there is little likelihood of significant energy at 
the disguised frequencies, then aliasing is not a problem. Otherwise, a degree of 
smoothing may be required to ensure that higher frequencies do not contaminate the 
lower frequencies. This smoothing must be performed prior to sampling or digitizing 
since aliased contributions cannot be recognized once they are present in the discrete 
data series. 

The aliasing problem can be illustrated in a number of ways. To begin with, we note 
that for discrete data at equally spaced intervals At, we can measure only those 
frequency components lying within the principal frequency range, 

-,JN _< ,~ _< -~o, ,~o _< ~ _< ,~N, ~o2v > 0 (5.6.53a) 

-f2v _<f _< -fo, fo _<f _<fN, fN > 0 (5.6.53b) 

in which ~lv = ~r/At andfN = 1/(2At) are the usual Nyquist frequencies in radians 
and cycles per unit time, respectively, and ,~o = 2Tr/T and fo = 1/T are corresponding 
fundamental frequencies for a time series of duration T. The Nyquist frequency is the 
highest frequency that can be extracted from a time series having a sampling rate of 
1~At. Clearly, if the original time series has spectral power at frequencies for which 
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Figure 5.6.16. The origin of alaising. (a) The solid line is the tide height recorded at Victoria, British 
Columbia over a 60-day period from 29July to 27 September 1975 (time in Julian days). The diamonds 
are the sea-level values one would obtain by only sampling once per day.(b) The power spectrum obtained 
from the two data series in (a). In this case, the high frequency energy (dashed curve) gets folded back into 

the spectrum at lower (aliased) frequencies (solid curve). 

if[ >_fN, these spectral contributions are unresolved and will contaminate power 
associated with frequencies within the principal range (Figure 5.6.17). The unresolved 
variance becomes lumped together with other frequency components. Familiar 
examples of aliasing are the slow reverse rotation of stage-coach wheels in classic 
western movies due to the under-sampling by the frame-rate of the movie camera. 
Even in modern film, distinguishable features on moving automobile tires often can 
be seen to rotate rapidly backwards, slow to a stop, then turn forward at the correct 
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rotation speed as the vehicle gradually comes to a stop. Automobile commercials avoid 
this problem by equipping the wheels with featureless hubcaps. 

If co, f _> 0 are frequencies inside the principal intervals (5.6.53), the frequencies 
outside the interval which form aliases with these frequencies are 

2CON • cO, 4CON • co, ..., 2pcoN • co (5.6.54a) 

2fN • f , 4fN + f , ..., 2pfN • f (5.6.54b) 

where p is a positive integer. These results lead to the alternate term folding frequency 
for the Nyquist frequency since spectral power outside the principal range is folded 
back, accordion-style, into the principal interval. As illustrated by Figure 5.6.17, 
folding the power spectrum about fN produces aliasing of frequencies 2 f N - - f  with 
frequenciesJ~ folding the spectrum at 2fN produces aliasing of frequencies 2fN + f w i t h  
frequencies 2fN - f w h i c h  are then folded back about fN into frequency f, and so forth. 
For example, if fN = 5 rad/h, the observations at 2 rad/h are aliased with spectral 
contributions having frequencies of 8 and 12 rad/h, 18 and 22 rad/h, and so on. 

We can verify that oscillations of frequency 2 P c o N • 1 7 7  are 
indistinguishable from frequency co (or f) by considering the data series x~(t) created 
by the single frequency component x~o(t)= cos(cot). Using the transformation 
co ~ (2pcoN • co), together with t, = nAt  and ~3 u = x / A t ,  yields 

x~(tn) -- cos [(2pcoN + co)tn] -- Re {exp [i(2PcoN • co)tn]} 

= Re {exp [i2pcoNtn] exp [• 

= (+l)PnRe[ exp (• - cos (wt,,) - x~(tn) 

(5.6.55) 

In other words, the spectrum of x(t) at frequency co will be a superposition of spectral 
contributions from frequencies co, 2pcoN + co, 4pcou • co, and so forth. More specifically, 
it can be shown that the aliased spectrum Sa(co) for discrete data is given by 

OO 

Sa(co) - ~ S(co + 2ncoN) 
n - - - - o o  

= S(~) + ~ [S(2n~N - -  ,~) + S(2nwN + co)] 
n=l 

(5.6.56a) 

(5.6.56b) 
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Figure 5.6.17. The spectral energies of all frequencies f = ~ /  27r at the nodes (,) located along the dotted 
line are folded back, accordion style, into the spectral estimate for the spectrum S(f) for the primary range 

0 <_ f <_ f~ (0 <_ w <_ w N). (Adapted from Bendat and Piersol, 1986.) 
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The true spectrum, S, gives the distorted spectrum, Sa, caused by the summation of 
overlapping copies of measured spectra in the principal interval. Only if the original 
record is devoid of spectral power at frequencies outside the principal frequency range 
will the spectrum of the observed record equal that of the actual oceanic variability. 
To avoid aliasing problems, one has no choice but to sample the data as frequently as 
justifiably possible (i.e. up to frequencies beyond which energy levels become small) 
or to filter the sampled data before they are recorded (as in the case of a stilling well 
used to eliminate gravity waves from a tidal record). A further example of spectral 
contamination by aliased frequencies is illustrated in Figure 5.6.18(a, b). In Figure 
5.6.18(b), we have assumed that the wave recorder was inadvertently programmed to 
record at 0.15 Hz, corresponding to a limiting wave period of 6.67 s. The energy from 
the shorter period waves were not measured but contaminate the energy of the longer 
period waves when folded back about the Nyquist frequency. 

5.6.5.3 Nyquist frequency sampling 

Sampling time series that have significant variability at the Nyquist frequency affords 
its own set of problems. Suppose we wish to represent y(t) through the usual Fourier 
relation 

CON 

y ( t ) -  / Y(w)e i"~t dw (5.6.57) 

where we have assumed that Y(,~) = 0 for [w[ > WN. In this case, there is no aliasing 
problem since there is no power at frequencies greater than WN. The function y(t) can 
be constructed from frequency components strictly in the interval (-wN, WN). In 
discrete form for infinite length data 

1 ~ n e i~ ( t -nA t )  d 
y(t) - 2WN n=-oc 

--03 N 

(5.6.58a) 

where the integral has the form of a sinc function such that 

sin [wN(t -- nat)] (5.6 58b) 
y(t) = ~ yn t - n A t  

n - - - - O C  

Given the data {Yn}, we can construct y(t). However, suppose that y(t) fluctuates with 
the Nyquist frequency WN such that 

y(t) -Yo cos (wNt + O) (5.6.59) 

where, for the sake of generality, the phase angle is arbitrary, 0 <_ 0 _ 2~-. Then, using 
sin (nTr) - 0  for all n (an integer) 

Yn = y(nAt) --Yo cos (nTr + O) =Yo[ cos (nzr)cosO] 
(5.6.60) 

= Yo ( -  1 )n cos 0 

This leads to a component with amplitude yn = y o ( - 1 )  n cos0 which fluctuates in sign 
because of the term (-1)n, - o c  _< n <_ e~. If 0 is unknown, the function y(t) cannot be 
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Figure 5.6.18. An aliased autospectrum. (a) The true spectrum, S(f) (m2//cps), of wind-generated waves 
as a function of frequency (Hz = cycles per second); (b) Aliased spectrum, S,,(f), that would arise from 

folding about a hypothetical Nyquist frequency fN = 0.13 Hz. 

constructed. If 0 = krr/2, so that cos (wNt § 0) = sin (wNt), the observer will find no 
signal at all. In general, 0 _< [cos01 < 1 and the magnitude will always be less thanyo, 
resulting in biased data. 

According to the above analysis, we should sample slightly more frequently than At 
if we are to fully resolve oscillations at the maximum frequency of interest (assumed to 
be the Nyquist frequency). A sampling rate of 2.5 samples per cycle of the frequency of 
interest appears to be acceptable whereby At = 1/(2.5f,~) = (2/5)(1if:v) = (4/5)TrfivN. 

5.6.5.4 Frequency resolution 

The need to resolve spectral estimates in neighboring frequency bands is an important 
requirement of time series analysis. Without sufficient resolution, it is not possible to 
determine whether a given spectral peak is associated with a single frequency, or is a 
smeared response containing a number of separate spectral peaks. A good example of 
this for tides is presented by Munk and Cartwright (1966) who show that for long 
records the main constituents in the diurnal and semidiurnal frequency bands can be 
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resolved into a multitude of other tidal frequencies. How well the peaks can be resolved 
depends on the frequency differences, Af, between the peaks and the length, T, of 
the data set used in the analysis. For an unsmoothed periodogram, the frequency 
resolution in hertz is roughly the reciprocal of the time duration in seconds of the 
data. 

The distinction between well-resolved and poorly resolved spectral estimates is 
somewhat subjective and depends on how we wish to define "resolution". As with 
diffraction patterns in classical optics, we can follow the "Rayleigh criterion" for the 
separation of spectral peaks (Jenkins and White, 1957). Recall that the diffraction 
pattern for a given frequency, f, of light varies as s inc(0)= s i n [ ( 0 - O f ) ] / ( O -  (Pf), 
where 0 is the angle of the incident light beam to the grating. This also is the functional 
form for the spectral peak of a truncated time series (see windowing in the next section). 
Two spectral lines are said to be "well resolved" if the separation between peaks exceeds 
the difference in frequency between the center frequency to the maximum at the first 
side-lobe and "just resolved" if the spectral peak of one pattern coincides with the first 
zero of the second pattern (Figure 5.6.19a-c). Here, the separation in frequency is equal 
to the difference in frequency between the peak of one spectrum and the first zero of the 
function s in(0) /0  of the second (where O=coT/2). The spectral peaks are "not 
resolved" if this separation is less than the separation between the center frequency and 
the first zero of the sin (0) /0  functions (Figure 5.6.19d). 

Consider an oceanic record consisting of two sinusoidal components, both having 
amplitude Yo and constant phase lags such that 

y(t) -yo[COS(Wlt + 0 1 ) +  cos (co2t +02)], - T / 2  <_ t <_ T/2 (5.6.61) 

where as usual co -  2rrf. The one-sided, unsmoothed power spectral density, S(co), for 
these data are then found from the Fourier transform 

S(~) ___1 2{ sin [�89 co~)] 
2TY~ [�89 - co, )] 

sin w2)]} 
I�89 

The power spectrum consists of two terms of the form s in(0) /0  centered at 
frequencies wl and w2. Using the Rayleigh criterion, we can just resolve the two peaks 
(i.e.-determine if there is one or two sinusoids contributing to the spectrum) provided 
that the frequency separation Aco = lcol - co2[ (Af = [/1 - - f 2 [ )  is equal to the frequency 
difference for the peak of one frequency and the first zero of sin (0)/0 for the other 
frequency. Since zeros of sin (0) /0  occur at frequencies f equal to +l /T ,  +2/T, 
..., •  the frequencies are just resolved when 

2rr 1 
A c o - - f - ;  A f - ~  (5.6.63a) 

and well-resolved for 

3rr 3 
Aw > -m-; Af > (5.6.63b) 

1 

In summary, resolution of two frequenciesfk and fk+l (= fk + Af) using an unsmooth- 
ed periodogram or equivalently a rectangular window, requires a record of length T, 
where Af = l IT  frequency units. Note also that 1/T is equal to the fundamental 
frequency, fx, which is the lowest frequency that we can calculate for the record. For 
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Figure 5.6.19. Resolution of spectral lines. (a, b) Well resolved; (c) just resolved; and (d) not resolved. 
(From Jenkins and White, 1957.) 

some nonrectangular windows, the length of the data set must be increased to about 
2T = 2 / A f  to achieve the same frequency separation. 

In a related study, Munk and Hasselman (1964) discuss the "super-resolution" of 
tidal frequency variability. The fact that time series of tidal heights vary at precise 
frequencies and have relatively large signal-to-noise ratios suggests that the traditional 
requirement (that a minimum record length T is required to separate tidal con- 
stituents separated by frequency difference Af = 1/T)  is "grossly incomplete". The 
modified resolvable frequency difference is 

1 27r 
A f  - rT A~o rT (5.6.64) 

in which r ~ (signal level/noise level) 1/2. On this basis, the Rayleigh criterion must be 
considered a conservative measure of the resolution requirement for deterministic 
processes. 

5.6.6 Smoothing spectral estimates (windowing) 

The need for statistical reliability of spectral estimates brings us to the topic of 
spectral averaging or smoothing. As we have seen, discrete Fourier transforms provide 
an elegant method for decomposing a data sequence into a set of discrete spectral 
estimates. For a data sequence of N values, the periodogram estimate of the spectrum 
can have a maximum of N/2  Fourier components. If we use all N/2 components to 
generate the periodogram, there are only two degrees of freedom per spectral estimate, 
corresponding to the coefficients An, Bn of the sine and cosine functions for each 
Fourier component (see Section 5.6.3.5). Based on the assumption that data are drawn 
from a normally distributed random sample, we can define the confidence limits for 
the spectrum in terms of a chi-squared distribution, ~2, where for n degrees of freedom 
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E[X~]  - -  i,.t 2 = n ,  E[(X 2 - , 2 ) ]  = 0.2 _ 2n (5.6.65) 

Substituting n = 2 into these expressions, we find that the standard deviation, or, is 
equal to the mean, #, of the estimate, indicating that results based on two degrees of 
freedom are not statistically reliable. It is for this reason that some sort of ensemble 
averaging or smoothing of spectral estimates is required. The smoothing can be ap- 
plied directly to the time series through convolution with a sliding averaging function 
or by averaging adjacent spectral estimates. A one-shot smoothing applied to the 
entire record increases only slightly the number of degrees of freedom per spectral 
estimate. In most practical applications, the full time series is broken into a series of 
short overlapping segments and smoothing applied to each of the overlapping seg- 
ments. We then ensemble average the smoothed spectra from each segment to increase 
the number of degrees of freedom per spectral estimate. The more smoothing we do, 
the narrower the confidence limits and the greater the reliability of any observed 
spectral peaks. The trade-off is a loss of spectral resolution and longer processing time. 

A window is a smoothing function applied to finite observations or their Fourier 
transforms to minimize "leakage" in the spectral domain. Convolution in the time 
domain and multiplication in the frequency domain are adjoint Fourier functions (see 
Appendix G regarding convolution). A practical window is one which allows little of 
the energy in the main spectral lobe to leak into the side-lobes where it can obscure 
and distort other spectral estimates that are present. In fact, weak signal spectral 
responses can be masked by higher side-lobes from stronger spectral responses. 
Skillful selection of tapered data windows can reduce the side-lobe leakage, although 
always at the expense of reduced resolution. Thus, we want a window that minimizes 
the side-lobes and maximizes (concentrates) the energy near the frequency of interest 
in the main lobe. These two performance limitations are rather troublesome when 
analyzing short data records. Short data occur in practice because many measured 
processes are of short duration or have slowly time-varying spectra that may be 
considered constant over only short record segments. The window is applied to data to 
reduce the order of the discontinuity of the boundary of the periodic extension since 
few harmonics will fit exactly into the length of the time series. 

Signals with frequencies other than those of the basis set are not periodic in the 
observation window. The periodic extension of a signal, not commensurate with its 
natural period, exhibits discontinuities at the boundaries of the observational period. 
Such discontinuities are responsible for spectral contributions or leakage over the 
entire basis set. In the time domain, the windows are applied to the data as a 
multiplicative weighting (convolution) to reduce the order of the discontinuities at the 
boundary of the periodic extensions. The windowed data are brought to zero smoothly 
at the boundaries so that the periodic extensions of the data are continuous in many 
orders of the derivatives. The value of Y(f) at a particular frequency f, sayfo, is the sum 
of all the spectral contributions at each f weighted by the window centered at fo and 

measured at f 

y( f )  = y 'o  r) , WOC) (5.6.66) 

There exist a multitude of data windows or tapers with different shapes and 
characteristics ranging from the rectangular (box-car) window discussed in the pre- 
vious section, to the classic Hanning and Hamming windows, to more sophisticated 
windows such as the Dolph-Chebyshev window. The type of window used for a given 
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application depends on the required degree of side-lobe suppression, the allowable 
widening of the central lobe, and the amount of computing one is willing to endure. 
We will briefly discuss several of the conventional windows plus the Kaiser-Bessel 
window recommended by Harris (1978). 

5. 6.6.1 Desired window qualities 

Windows affect the attributes of a given spectral analysis method, including its ability 
to detect and resolve periodic waveforms, its dynamic range, confidence intervals, and 
ease of implementation. Spectral estimates are affected not only by the broadband 
noise spectrum of the data but also by narrow-band signals that fall within the 
bandwidth of the window. Leakage of spectral power from a narrow-band spectral 
component, fo, to another frequency component, fa, produces a bias in the amplitude 
and position of a spectral estimate. This bias is especially disruptive for the detection 
of weak signals in the presence of nearby strong signals. To reduce the bias, we need a 
"good" window. Although there are no universal standards for a good window, we 
would like it to possess the following characteristics in Fourier transform space: 

(1) 

(2) 

(3) 

The central main lobe of the window (which is centered on the frequency of 
interest) should be as narrow as possible to improve the frequency resolution of 
adjacent spectral peaks in the dataset, and the first side-lobes should be greatly 
attenuated relative to the main lobe to avoid contamination from other frequency 
components. Here, the narrowness of the central lobe is measured by the positions 
of the - 3  dB (half power points) on either side of the lobe. Retention of a narrow 
central lobe, while suppressing the side-lobes, is not as easy as it sounds since 
suppression of the side-lobes invariably leads to a broadening of the central lobe; 
The window should suppress the amplitudes of side-lobes at frequencies far 
removed from the central lobe. That is, the side-lobes should have a rapid 
asymptotic fall-off rate with frequency so that they leak relatively little energy 
into the spectral estimate at the central lobe (i.e. into the frequency of interest); 
The coefficients of the window should be easy to generate for multiplication in the 
time domain and convolution in the Fourier transform domain. 

A good performance indicator (PI) for the time domain window w(t) can be defined as 
the difference between the equivalent noise bandwidth, ENBW, and the bandwidth, 
BW, located between the -3  dB levels of the central lobe (Harris, 1978) 

1 ~ w2 (nAt) 
E N B W -  BW BW n 

P I -  = - 1 (5.6.67~ 
BW 2 \ ! 

where we have normalized by the bandwidth. The windows that perform well have 
values for this ratio (x 100%) of between 4.0 and 5.5%. A summary of the figures of 
merit for several well-known windows is presented in Table 5.6.3. PI values are 
obtained using columns 4 and 5. The choice of window can be daunting; Harris lists 
more than 44 windows for smoothing spectral estimates. 
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Table 5.6.3. Windows and figures of merit. The last column gives the correlation between adjacent data 
segments for the specified percentage segment overlap. For completeness, we include the Tukey and 
Parzen windows. (From Harris, 1978) 

Window 

Highest Side-lobe Equiv. 3.0 dB Overlap 
side-lobe attenuation noise BW corr. 
level (dB)  (dB/octave) BW (BINS) (BINS) 75% 50% 

Rectangle -13 -6  1.00 0.89 0.750 0.500 
Triangle -27 -12 1.33 1.28 0.719 0.250 
Hanning -32 -18 1.50 1.44 0.659 0.167 
Hamming -43 -6  1.36 1.30 0 .707 0.235 
Parzen -21 -12 1.20 1.16 0.765 0.344 
Tukey o~ - 0.5 -15 -18 1.22 1.15 0.727 0.364 
Kaiser o~ = 2.0 -46 -6  1.50 1.43 0.657 0.169 
Bessel 
c~ = 2.5 -57 -6  1.65 1.57 0.595 0.112 
c~ - 3.0 -69 -6  1.80 1.71 0.539 0.074 
c~ = 3.5 -82 -6  1.93 1.83 0.488 0.048 

5.6.6.2 Rectangular (box-car) and triangular windows 

As discussed in Section (5.6.4), a rectangular window has an ampli tude of unity 
throughout  the observation interval of duration T = NAt ,  with the weighting given by 

w ( n A t ) - - l ,  n - - 0 ,  1 , . . . , N - 1  ( o r - N / 2 < _ n < _ N / 2 )  
(5.6.68) 

= 0, elsewhere 

(Figure 5.6.20a). Using the relation coT = NO, where ~9 - coat and T - NAt ,  the 
spectral window from the discrete Fourier transform (DFT) is 

W(O) - Te -i(N-1)e/2 sin (N0/2) 
NO~2 (5.6.69a) 

]W(0)] 2 - T2l[sin(NO/2)]2 
NO~2 (5.6.69b) 

(Figure 5.6.20b) where the exponential term in equation (5.6.69a) gives the phase shift 
of the window as a function of the frequency oa = 6~At. The function W, the Dirichlet 
kernal,  has strong side-lobes, with the first side-lobe down only 13 dB from the main 
lobe. The remaining side-lobes fall off weakly at 6 dB per octave, which is the 
functional rate for a discontinuity (an "octave" corresponds to a factor of two in 
change frequency). Zeros of W(0) occur at integer multiples of the frequency 
resolution, fl - 1/T, for which NO~2 =coT~2 = • That  is, where 
f = + p / T ( + I / T ,  +2/T,  ... ). 

The tr iangular  (Bartlett) window 

n 

w(nAt) -- ( N / 2 ) '  n = 0, 1, . . . ,  N/2 
N - n  
( N / 2 ) '  rz=  N / 2 , . . . , N - 1  

(5.6.70a) 

N/2  -]n] 

(N/2) 
o < Inl <_ N/2 (5.6.70b) 
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Figure 5.6.20. A box-car window for N = 41 weights. (a) Weights, w(n) = 1.0 in the time domain 
( -20  < n <_ 20). (b) Fourier transform of the weights, ]W(0)], plotted as 20 log lW(O)l where 

0 = w A t / N  = 407r/N is the frequency span of the window. 

(Figure 5.6.21a) has the DFT 

W(O) = ~2Te-i(N-')~ [sin. NO/2(NO/2)] 2 (5.6.71a) 

[W(0) 2 _ 4T 2 [ sin (NO/2)] 4 
- ~  NO/2 J 

(5.6.71b) 

(Figure 5.6.21b) which we recognize as the square of the sinc function for the 
rectangular window. The main lobe between zero crossings is twice that of the 
rectangular window but the level of the first side-lobe is down by 26 dB, twice that of 
the rectangular window. Despite the improvement over the box-car window, the side- 
lobes of the triangular window are still extensive and use of this window is not 
recommended if other windows are available. 

The Parzen window 

w(nAt )  -- 1 .0 -  ]n/(N/2)l 2 0 _< In] _< N / 2  (5.6.72) 

is the squared counterpart to the Bartlett window. This is the simplest of the 
continuous polynomial windows and has first side-lobes down by -22 dB and falls off 
as 1 / J .  
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5.6.6.3 Hanning and Hamming windows (50% overlap) 

445 

The Hann  window, or Hanning window as it is most commonly  known, is named after 
the Aust r ian  meteorologis t  Julius von Hann  and is part  of a family of t r igonometr ic  
windows having the generic form cos'~(n), where the exponent ,  c~, is typically an 
integer  from 1 through 4. The case ~ - 1 leads to the Tukey (or cosine-tapered) window 
(Harris ,  1978). As ~ becomes larger, the window becomes smoother ,  the side-lobes fall 
off faster and the main  lobe widens. The  Hann ing  window (~ - 2), also known as the 
raised cosine and sine-squared window, is defined in the t ime domain  as 

w(nAt )  - - s in  2(Trn/N) - �89 - cos (2~n/N)],  n = 0, 1, ..., N - 1 (5.6.73a) 

= sin2 [~(n + N / 2 ) / N ]  

- ![1.0 - cos[27r(n + N/2) /N]]  n - - N / 2  N / 2  (5.6.73b) 
- -  2 ' ' " ' "  

(Figure  5.6.22a) which is a cont inuous function with a cont inuous  first derivative. The  
D F T  of this weight ing  function is 

W(O) - ~D(O) + ~[D(O - 0]) + D(O + 0] )] (5.6.74) 
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Figure 5.6.20). 
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D(O) - Te i~ sin (NO~2) 
NO~2 (5.6.75) 

is the standard function (Dirichlet kernal) obtained for the rectangular and triangular 
windows. Thus, the window consists of the summation of three sinc functions (Figure 
5.6.22c), one centered at the origin, 0 = 0, and two other translated Dirichlet kernals 
having half the amplitude of the main kernal and offset by 0 = +27r/N from the 
central lobe. There are several important features of the window response W(O). First 
of all, the functions D are discrete and defined only at points which are multiples of 
27r/N, which also correspond to the zero crossings of the central function, D(O). 
Secondly, for all of zero crossings except those at 0• = +27r/N, the translated 
functions also have zero crossings at multiples of 27r/N. As a result, only values at 
-27v/N, O, and + 27v/N contribute to the window response. It is the widening of the 
main lobes of the translated functions that causes them to be nonzero at the first zero- 
crossings of the central function. Lastly, because the translated functions are out of 
phase with the central function, they tend to cancel the side-lobe structure. The first 
side-lobe is down by 32 dB from the main lobe. The remaining side-lobes diminish as 
1/~3 or at about -18  dB per octave. 

An attractive aspect of the Hanning window is that smoothing in the frequency 
domain can be accomplished using only three convolution terms corresponding to 
0o, 0-~1. The Hanning-windowed Fourier transform YH for the spectral frequency, f k, is 
then obtained from the raw spectra Y for the frequencies fk and the two adjoining 
frequencies fk- l, fk+ 1; that is 

YH(fk) -- �89 l[Y(fk-l) + Y~+I)]  } (5.6.76) 

The transform YOCk) has been rectangular-windowed by the act of collecting the data 
but is "raw" in the sense that no additional smoothing has been applied. Other 
processing advantages of the Hanning window are discussed by Harris (1978). Since 
the squares of the weighting terms (1/2) 2 + (1/4) 2 + (1/4) 2 = 3/8, thetotal  energy Will 
be reduced following the application of the Hanning window. To compensate, the 
amplitudes of the Fourier transforms YH(f) should be multiplied by v/(8/3) prior to 
computation of the spectra. Specifically 

N - 1  

YHOCk) -- /kt(8/3) 1/2 Zyn[1  -- COS (2wn/N)]e -i2~rkn/n (5.6.77) 
n=0 

where ~ = k/(NAt) .  
The Hamming window is a variation on the Hanning window designed to cancel the 

first side-lobes. To accomplish this, the relative sizes of the three Dirichlet kernels are 
adjusted through a parameter, 7 where 

w(nAt) = 7 + (1 - 7)cos (27rn/N)], n = -N /2 ,  ...,N/2 (5.6.78a) 

W(O) = 71)(0) + 1(1 - 7)[/)(0 - 27r/N) + D(O + 27r/N)] (5.6.78b) 

Perfect cancellation of the first side-lobes (located at 01 = 2.57r/N) occurs when 
7 = 2 5 / 4 6 , ~ 0 . 5 4 3 4 7 8 .  Taking 7),=0.54 leads to near-perfect cancellation at 
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01 - 2.67r/N and a marked improvement in side-lobe level. The Hamming window is 
defined as 

w(nAt) = 0.54 + 0.46cos (27rn/N), n = - N / 2 ,  ..., N/2  (5.6.79) 

and has a spectral distribution similar to that of the Hanning window with more 
"efficient" side-lobe attenuation. The highest side-lobe levels of the Hanning window 
occur at the first side-lobes and are down by 32 dB from the main lobe. For the 
Hamming window, the first side-lobe is highly attenuated and the highest side-lobe 
level (the third side-lobe) is down by 43 dB. To compensate for the filter, the amp- 
litudes of the Fourier transforms YHam(f)  should be multiplied by v/(5/2) prior to 
computation of the spectra. On a similar note, if you are going to use any of the 
windows in this section to calculate running mean time series, make sure each esti- 
mated value is divided by the sum of the weights used, ~-~N W,. 

5. 6.6.4 Kaiser-Bessel window (75% overlap) 

Harris (1978) identifies the Kaiser-Bessel window as the "top performer" among the 
many different types of windows he considered. Among other factors, the coefficients 
of the window are easy to generate and it has a high equivalent noise bandwidth, one 
of the criteria used to separate good and bad windows. The trade-off is increased main- 
lobe width for reduced side-lobe levels. In the time domain the filter is defined in 
terms of the zeroth-order modified Bessel functions of the first kind. 

w(nAt) = Io(Traf~) 0 < [nt < N/2  (5.6.80) 
I o ( ~ )  ' - - 

where the argument 9t - [1 .0 -  (2n/N)2] 1/2 and 

Oc [o(X)=Z[(X/2)k]2 
k=0 L k!  J (5.6.81) 

The parameter ~-a is half of the time-bandwidth product, with a typically having 
values 2.0, 2.5, 3.0, and 3.5. The transform is approximated by 

sinh {[7r2o~ 2 -- (N0/2)2] 1/2} 
(5.6.82) g(o)  [N/Io(rCa)] {[ 7t'2ct2 _ (N0/2)2]1/2} 

Plots of the weighting function w and the DFT for W are presented in Figure 5.6.23 
for two values of the parameter c~(= 2.0,3.0). The modified Bessel function Io is 
defined as follows. 

For Ix] <_ 3.75 

Io(x) = {[{[(4.5813 x 10-3Z + 3.60768 x 10-2)Z 

+ 2.659732 x 10-1]Z + 1.2067492}Z + 3.0899424]Z + 3.5156229}Z + 1.0 

(5.6.83a) 

where for real x 

Z -  (x/3.75) 2 (5.6.83b) 

For Ixl > 3.75 
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I o ( x ) - e x p ( l x ] ) / q x ] l / 2 { [ ( { [ { [ ( 3 . 9 2 3 7 7  • 10-3Z - 1.647633 x 10-2)2 

+ 2.635537 • 10-2]Z- 2.057706 • 10-2)Z-F 9.16281 • 10-3]Z 

- 1.57565 • 10-3)Z + 2.25319 • 10-3)Z + 1.328592 • 10-2)Z 

+ 3.9894228 • 10 -] ) 

(5.6.83c) 

where 

Z -  3.75/]xl (5.6.83d) 

The usefulness of the Kaiser-Bessel window is nicely illustrated by Figure 5.6.24. 
Here, we compare the average spectra (in cm2/cpd) obtained from a year-long record 
of hourly coastal sea level following application of a rectangular window (the worst 
possible window) and a Kaiser-Bessel window (the best possible window) to a series of 
overlapping data segments. In each case, the window length is 42.7 days and there are 
K - 32 degrees of freedom per spectral estimate, corresponding to roughly 16 separate 
spectral estimates for 50% window overlaps. Both windows preserve the strong spectra 
peaks within the tidal frequency bands centered at 1, 2, and 3 cpd. However, unlike 
the rectangular window, the Kaiser-Bessel window results in little energy leakage 
from the tidal bands to adjacent frequency bands. The high spectral levels at periods 
shorter than about two days O F > 0.5 cpd) in the nontidal portion of the rectangularly 
windowed spectra is an artifact of the window. The slightly better ability of the 
rectangular window to resolve frequency components within the various tidal bands is 
outweighed by the high contamination of the spectrum at nontidal frequencies. 
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5.6.7 S m o o t h i n g  spectra  in the f requency  d o m a i n  

As we noted earlier, each spectral estimator for a random process is a chi-squared 
function with only two degrees of freedom (DOF). Because of this minimal number of 
degrees of freedom, some sort of smoothing or filtering is needed to increase the 
statistical significance of a given spectral estimate. The windowing approach des- 
cribed in the previous section, in which we partitioned the time series into a series of 
shorter overlapping segments, is one of a number of computational methods used to 
smooth (average) spectral estimates. 

5. 6. 7.1 B a n d  averaging 

For a time series consisting of N data points, one of the simplest forms of smoothing is 
to use the discrete Fourier  transform or fast Fourier transform to calculate individual 
spectral estimates for the maximum number of frequency bands (N/2) and then 
average together adjacent spectral estimates. The resultant spectral estimate is 
assigned to the mid-point of the average. Thus, we could average bands 1, 2, and 3, to 
form a single spectral estimate centered at band 2, then bands 4, 5, and 6 to form an 
estimate centered at band 5, and so on. It is often useful in this type of frequency band 
averaging to use an odd-numbered smoother so that the center point is easily defined. 
In particular, if we were to average groups of three adjacent (and different) bands to 
form each estimate, the number of degrees of freedom per estimate would increase 
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Figure 5.6.24. Spectra (cm2/cpd) of the hourly coastal sea-level height recorded at Victoria, British 
Columbia during 1975 following windowing (number of hourly samples, N - 8750). Linear frequency. 
Solid line: Rectangular window. Dashed line: Kaiser-Bessel window with c~ : 3. Both windows have a 
length of 1024 h ( = 42.67 days) and there are DOF = 32, using a total of 16 50% overlapping data 
segments. The tidal peak centered at 3 cpd results from nonlinear interactions within the semidiurnal 

frequency band. Vertical line is the 95% level of confidence. (Courtesy, A. Rabinovich.) 
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from 2 to 6. In the case of the Blackman-Tukey procedure, an alternative method is to 
use bigger lag steps in the computation of the autocovariance function before its 
transform is taken. This is functionally equivalent to smoothing by averaging together 
the individual spectral estimates. 

5.6.7.2 Block averaging 

As noted earlier, a common smoothing technique is to segment the time series (of 
length N) into a series of short, equal-length segments of length Ns (where N = KNs, 
and K is a positive integer). Spectra are then computed for each of the K segments and 
the spectral values for each frequency band then block averaged to form the final 
spectral estimates for each frequency band. If there is no overlap between segments, 
the resulting degrees of freedom for the composite spectrum will be 2K. This assumes 
that the individual sample spectra have not been windowed and that each spectral 
estimate is a chi-squared variable with 2 degrees of freedom. Since the frequency 
resolution of a time series is inversely proportional to its length, the major difficulty 
with this approach is that the shorter time series have fewer spectral values than the 
original record over the same Nyquist frequency range. In other words, the maximum 
resolvable frequency 1~2At remains the same since At is unchanged, but the 
frequency spacing between adjacent spectral estimates is increased for the short 
segments because of the reduced record lengths. 

However, by not overlapping adjacent segments, we could be overly conservative in 
our estimate of the number of degrees of freedom. For that reason, most analysts 
overlap adjacent segments by 30-50% so that more uniform weighting is given to 
individual data points. The need for overlapping segments is necessary when a 
window is applied to each individual segment prior to calculation of the spectra. The 
effect of the window is to reduce the effective length of each segment in the time 
domain so that, for some sharply defined windows such as the Kaiser-Bessel window, 
even adjoining segments with 50% overlap can be considered independent time series 
for spectral analysis. As in Figure 5.6.24, The degrees of freedom of the periodograms 
averaged" together is 4K, rather than 2K for the nonoverlapping segments. 
Consideration must be given to the correlation among individual estimates (the 
greater the overlap the higher the correlation). Nuttall and Carter (1980) report that 
92% of the maximum number of equivalent degrees of freedom can be achieved for a 
Hanning window which uses 50% overlap. Clearly, we must sacrifice something to 
gain improved statistical reliability. That "something" is a loss of frequency resolution 
due to the broad central lobe that accompanies windows with negligible side-lobes. 

As an example, consider the spectrum of a 1-min sampled time series 
y(t)-Acos(27rft)+c(t)  of length 512 rain composed of Gaussian white noise 
c(t)(Ic I _< 1) and a single cosine component of amplitude, A, and frequency f = 
0.23 cpmin (period T = 1/f = 4.3 min). The magnitude of the deterministic 
component, A, is five times the standard deviation of the white noise signal and 
V[c] - (1/v/2) cm 2. The raw periodogram (Figure 5.6.25a) reveals a large narrow peak 
at the frequency (0.23 cpmin) of the single cosine term plus a large number of smaller 
peaks associated with the white noise oscillations. In this case, there has been no 
spectral smoothing and the resultant spectral estimates are chi-squared functions with 
2 degrees of freedom. The variances of the spectral peaks are as large as the peaks 
themselves. If we average together three adjacent spectral components (Figure 
5.6.25b), we obtain a much smoother spectrum, S(f). Here, Si - S~)  is defined by Si - 
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1/3[S~._1) + S(fi) + S O ~ i + I ) ] , S i + 3  --  1/3[S~+2) + S(/~i+3) + S(/~+4)], and so on. Each of 
the new spectral estimates now has six degrees of freedom instead of only two. The 
bottom two panels in this figure show what happens if we increase the number of 
frequency bands averaged together to seven (Figure 5.6.25c) and then to 15 (Figure 
5.6.25d). Note that, with increasing degrees of freedom (DOF), our confidence in the 
existence of a spectral peak increases but delineation of the peak frequency decreases. 
With increasing DOF, there is increased smoothing of all spectral peaks (see also 
Figure 5.6.24). The same effect can be achieved by operating on the autocovariance 
function rather than on the Fourier spectral estimates. In particular, a spectrum 
similar to Figure 5.6.25(a) is obtained using the autocovariance transform method on 
the time seriesy(t) for a time lag of 1 min (the sampling interval). If we apply a lag of 
3 min in computing the autocovariance transform, we obtain a spectrum similar to 
Figure 5.6.25(b), and so on. Any differences between the two methods will be due to 
computational uncertainties. 

To determine the number of degrees of freedom for any block averaging, we define 
the normalized standard error r of the one-sided spectrum, Gyy(f), of the time 
series y(t) of length T = NAt,  as 

c[Gyy (f)] V[Gyy(f)]I/2 
- Gyy(f) (5.6.84) 

where V[(~] is the variance of (~, the tilde (~) denotes the raw estimate of the time 
series, and 

G y y ( f ) / G y y ( f )  - X~/2 (5.6.85) 

is a chi-square variable with n - 2 degrees of freedom. For the narrowest possible 
resolution Af = 1/T, we have 

~[Oyy (f)] (2n) 1/2 - =(2/n)  1/2 (5.6.86) 
n 

For maximum resolution, n = 2 and so ~((~) = l, giving the not-so-useful result that 
the standard deviation of the estimate is as large as the estimate itself. If, on the other 
hand, we average the spectral estimates for each frequency for the maximum 
resolution spectra using a total of Ns separate and independent record segments of 
length Ts (where T = Ns. Ts) we find 

2 x, 
GyYOC) - N~Ts ~ IYi~' Ts)12 (5.6.87) 

i-1 

so that 

c[Gyy(f)]- (2n/2Ns) 1/2 - (l/Ns) 1/2 (5.6.88) 

The resolution (effective) bandwidth is be - Ns/T = 1/Ts. Since the first estimate gives 
two degrees of freedom per spectral band, this gives 2N~ degrees of freedom per 
frequency band. 
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Figure 5.6.25. Periodogram power spectral estimates for a time series composed of Gaussian white noise 
and a single cosine constituent with a frequency of 0.23 cpmin and amplitude five times that of the white 
noise component. N - number of spectral bands and vertical lines are the 95% confidence intervals. (a) 
Raw (unsmoothed) periodogram, with DOF - 2; (b) smoothed periodogram, by averaging three 
adjacent spectral estimates such that DOF =6; (c) as with (b) but for seven frequency bands, and DOF 

*= 14; as with (b) but for I5 frequency bands, DOF = 30. 

5.6.8 Confidence intervals on spectra 

We can generalize equation (5.6.85) by noting that the ratio of the estimated spectrum 
and the expected values of the spectrum 

b'Gyy(f) X2 u (5.6.89) 
Gyy(f) 

is distributed as a chi-square variable with v degrees of freedom. It then follows that 

p 2 z"GyyO V) 
< X~-~/2,~,] = 1 - a (5.6.90) 

where 

P[X2~, -< X~/2,v] - -  a /2  (5.6.91) 
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Thus, the true spectrum, Gyy(f), is expected to fall into the interval 

z,,Gyy(f_______~) < Gyy(f) < (5.6.92) 

with (1 - a ) 1 0 0 %  confidence. In this form, the confidence limit applies only to the 
frequency f and not to other spectral estimates. We further point out that the degrees 
of freedom, u, in the above expressions are different for windowed and nonwindowed 
time series. For windowed time series, we need to use the "equivalent" degrees of 
freedom, as presented in Table 5.6.4 for some of the more commonly used windows. 

Another way to view these arguments is to equate GyyO c) with the measured 
standard deviation, s2(/), of the spectrum and Gyy(D with the true variance, o'2 (f). Then 

(u - 1 )s 2 0 c) (u - 1 )s 2 (f) 
< o-2(f) < (5.6.93) 

~-c~/2,u ~2/2,u 

If spectral peaks fall outside the range (5.6.92) then to the ( 1 -  c~)100% confidence 
level they cannot have occurred by chance. The confidence levels are found by looking 
up the values for X~-~/2,~ an d X2/2~ in a chi-square table, then calculating the 
intervals based on the observed standard deviation, s. (Confidence limits on spectral 
coherency functions are given in Section 5.8.6.1.) 

5.6.8.1 Confidence intervals on a logarithmic scale 

The confidence intervals derived above apply only to individual frequencies, f. This 
results from the fact that the confidence interval is determined by the value Gyy(/) of the 
spectral estimate and will be different for each spectral estimate. It would be convenient 
if we could have a single confidence interval that applies to all of the spectral values at all 
frequencies. To obtain such a confidence interval, we transform the spectrum using the 
loglo function. Transforming the above confidence limits we have 

log [Gyy(f)] + log [tl/)(.~_c~/2,u ] ~ log [Gyy(f)] ~ log [Gyy(f)] + log [~/~2/2,u ] (5.6.94) 

or 

log <_ log [Cyy0")] - log _< log (5.6.95) 

When the estimated spectrum is plotted on a log scale, a single vertical confidence 

Table 5.6.4. Equivalent degrees of freedom for spectra calculated using different windows. N is the 
number of data points in the time series and M is the half-width of the window in the time domain. 
(From Priestley, 1981). N r M for the truncated periodogram 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Type of window Equivalent degrees of freedom 

Truncated periodogram N/M 
Bartlett window 3N/M 
Daniell window 2N/M 
Parzen window 3.708614(N/M) 

Hanning window (8/3)(N/M) 
Hamming window 2.5164 (N/M) 



Time-series Analysis Methods 455 

interval is determined for all frequencies by the upper and lower bounds in the above 
expression (Figure 5.6.26a). The spectral estimate Gyy(f) itself is no longer a part of the 
confidence interval. This aspect, together with the fact that most spectral amplitudes 
span many orders of magnitude, is a principal reason for presenting spectra as log 
values. If larger numbers of spectral estimates are averaged together at higher 
frequencies (i.e. u is increased), the confidence interval narrows with increasing 
frequency (Figure 5.6.26b). Note that the length of the confidence interval is longer 
above the central point than below. 

5.6.8.2 Fidelity and stability 

The general objective of all spectral analysis is to estimate the function Gvy0 r) as 
accurately as possible. This involves two basic requirements: 

(1) That the mean smoothed spectrum, Gyy(f), be as close as possible to the actual 
spectrum Gyy(f). That is, the bias 

B ( f )  - Gyy(f)  - OyyO c) (5.6.96) 

should be small. If this is true for all frequencies, then Gyy(f) is said to reproduce 
Gyy~ with high fidelity. 

(2) For a time series of length T that has been segmented into M pieces for spectral 
estimation, the variance of the smoothed spectral estimator for bandwidth b~ is 

(M/bl ) [Gyy(f)] 2 (5.6.97) 
VIOyY(f)] ~ T 

and should be small. If this is true, the spectral estimator is said to have high 
stability. 

5.6.9 Zero-padding and prewhitening 

For logistical reasons, many of the time series that oceanographers collect are too short 
for accurate definition of certain spectral peaks. The frequency resolution Af = 1/T for 
a record of length T may not be sufficient to resolve closely spaced spectral components. 
Also, discrete points in the computed spectrum may be too widely spaced to adequately 
delineate the actual frequency of the spectral peaks. Unfortunately, the first problem-- 
that of trying to distinguish waveforms with nearly the same frequencymcan only be 
solved by collecting a longer time series; i.e. by increasing T to sharpen up the frequency 
resolution f of the periodogram. However, the second problemmthat of locating the 
frequency of a spectral peak more precisely--can be addressed by padding (extending) 
the time series with zeros prior to Fourier transforming. Transforming the data with 
zeros serves to refine the frequency scale through interpolation between power spectral 
density estimates within the Nyquist interval --fN <_f <_fN. That is, additional fre- 
quency components are added between those that would be obtained with a nonzero- 
padded transform. Adding zeros helps fill in the shape of the spectrum but in no case is 
there an improvement in the fundamental frequency resolution. Zero-padding is useful 
for: (1) smoothing the appearance of the periodogram estimates via interpolation; (2) 
resolving potential ambiguities where the frequency difference between line spectra is 
greater than the fundamental frequency resolution; (3) helping define the exact 
frequency of spectral peaks by reducing the "quantization" accuracy error; and (4) 
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Figure 5.6.26. Confidence intervals for current velocity spectra at 50-m depth for three locations (B,C, and 62) on the northeast Gulf of Alaska shelf (59.5~ 
142.2~ 15 March to 15 April 1976. (a) 95% interval for the low-pass filtered currents. The single vertical bar applies to all frequencies; (b) 95% interval for 
unfiltered records. Confidence interval narrows at higher frequencies with the increased number of degrees of freedom (from 4 to 36) used in selected frequency ranges. 

(Adapted from Muench and Schumacher, 1979.) 

e.,~. 

t '5 

t ~  



Time-series Analysis Methods 457 

extend the number of samples to an integer power of 2 for FFT analysis. An example of 
how zero-padding improves the spectral resolution of a simple digitized data set is 
provided in Figure 5.6.27. We again emphasize that increased zero-padding helps locate 
the frequency of discernible spectral peaks, in this case the peaks of the sin x/x function, 
but cannot help distinguish closely spaced frequency components that were unresolved 
by the original time series prior to padding. 

Prewhitening is a filtering or smoothing technique used to improve the statistical 
reliability of spectral estimates by reducing the leakage from the most intense spectral 
components and low-frequency components of the time series that are poorly resolved. 
To reduce the biasing of these components, the data are smoothed by a window whose 
spectrum is inversely proportional to the unknown spectrum being considered. 
Within certain frequency bands, the spectrum becomes more uniformly distributed 
and approaches that of white noise. Information on the form of the window necessary 
to construct the white spectrum must be available prior to the application of the 
smoothing. In effect, the time series y(nAt) is filtered with the weighting function 
h(nAt) such that the output is 

y'(nAt) = h(nAt). (nAt) (5.6.98) 

has a nearly white spectrum. Once the spectrum Sy(w) is determined, the desired 
spectrum is derived directly as 

iH(co)]2 (5.6.99) 

The best aspects of the parametric and nonparametric spectral techniques can be 
combined if a parametric model is used to prewhiten the time series prior to the 
application of a smoothed periodogram analysis. In most prewhitening situations, one 
is limited to using the first-difference filter in which the current data value is 
subtracted from the next value multiplied by some weighting coefficient, 0 _< a <_ 1. 
That isy'(t) - y ( t )  - ay(t + At). The weighting coefficient can be taken as equal to the 
correlation coefficient of the initial data series with a shift of one time step, At. The 
filter suppresses low frequencies and stresses high frequencies and has a transform 

H(f) = [1 - a e - i 2 r r f A t ]  2 = 1 - 2a cos (2rrfAt) + O~ 2 (5.6.100) 

Prewhitening reduces leakage and increases the effectiveness of frequency averaging 
of the spectral estimate (reduces the random error). The reduced leakage gives rise to 
a greater dynamic range of the analysis and allows us to examine weak spectral 
components. Notice that, if Y0 c) is the Fourier transform ofy(t), then the Fourier 
transform ofy'(t) is 

y'(,~) - / y ' ( t ) e - i ~ t d t  ~ ,~. Y(~) (5.6.101) 

t 

so that first differencing is like a linear high-pass filter with amplitude IH(w)[ = ]w I. 
This effect shows up quite well in the processing of satellite-tracked drifter data. 
Spectra of the drifter positions (longitude, x(t); latitude, y(t)) as functions of time, t, 
are generally "red" whereas the spectra of the corresponding drifter velocities (zonal, 
u = ~x /A t ;  meridional, v = Ay/At)  are considerably "whiter" (Figure 5.6.28). 



458 Data Analysis Methods in Physical Oceanography 

T i m e  d o m a i n  F r e q u e n c y  d o m a i n  

(a) 
1.0 

t 

-Z  o _Ix 
2 2 

R E C T A N G U L A R  D A T A  W I N D O W  OF 
L E N G T H  T 

I-_5-_~-~-2-zx,~• o • 3_'-14_ !" 
T T T T T T T T T T 

C O N T I N U O U S  F O U R I E R  T R A N S F O R M  OF 
R E C O R D  3a 

(b) 

',;',', ; ' ,~ i  + S A M P L E  P O I N T  

I t 

-Z  0 Z 
2 2 

R E C T A N G U L A R  W I N D O W  3a WITH 
EQUI  S P A C E D  S A M P L E S  

I 
T 

I t I t I I , I I 
-4  -3  -2  - I  0 ! 2 3 4 
T T T T T T T T 

D I S C R E T E  T R A N S F O R M  OF 
U N A U G M E N T E D  R E C O R D  3b 

(c) 

lo~::! .... 1 
T ' ' ' '  - T  0 -~- T 

R E C O R D  3b A U G M E N T E D  WITH 
E Q U A L  N U M B E R  OF Z E R O E S  

t a+++~ I +% o 
I+++  +++1 0 +++1 I +++ ', -- 

D I S C R E T E  T R A N S F O R M  OF 
R E C O R D  A U G M E N T E D  TO L E N G T H  41 

Figure 5.6.27. Use of zero padding to improve the delineation of spectral peaks. (a) A continuous box-car 
window of length T and its continuous Fourier transform; (b) a discrete sample of (a) at equally spaced 
sampling intervals and its discrete Fourier transform; (c) same as (b) but with zero padding of 2T data 

points. (From Henry and Graefe, 1971.) 

5.6.10 Spectra l  ana lys i s  of  u n e v e n l y  s p a c e d  t ime  ser ies  

Most discrete oceanographic time-series data are recorded at equally spaced time 
increments. However, some situations arise where the recorded data are spaced 
unevenly in time or space. For example, positional data obtained from satellite-tracked 
drifters are sampled at irregular time intervals due to the eastward progression in the 
swaths of polar-orbiting satellites and to the advection of the drifters by surface 
currents. Repeated time-series oceanic transects are typically spaced at irregular 
intervals due to the vagaries of ship scheduling and weather. In addition, instrument 
failure and data drop-outs generally lead to "gappy", irregularly spaced time series. 

As noted in Section 3.17, a common technique for dealing with irregularly sampled 
or gappy data is to interpolate data values to a regular grid. This works well as long as 
there are not too many gaps and the gaps are of short duration relative to the signals of 
interest. Long data gaps can lead to the creation of erroneous low-frequency 
oscillations in the data at periods comparable to the gap lengths. Only for the least- 
squares method for harmonic analysis described in Section 5.5 is unevenly sampled 
data perfectly acceptable. Vani~ek (1971), Lomb (1976) and others have devised a 
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least-squares spectral analysis method for unevenly spaced time series. The Lomb 
method described by Press et al. (1992) evaluates data, and associated sines and 
cosines, at the times t,, that the data are measured. For the N data values X(tn) = Xn, i = 
1, . . . ,  N, the Lomb-normalized periodogram is defined as 

+ 
[ /xn  /cosi /t   /11 

1 n - 1  

N 
P(w) ~ ~ cos 2[W(tn - 7")] 

n = l  

[n= /Xn /sinI /tn T/I] 2 

N 

sin 2[w(tn - 7-)] 
n = l  

(5.6.102) 

where as usual 

1 N N 

~ _ r E X  n 0 . 2  1 , - N-------Z~ ~-'~ (x,, - ~)2 (5.6.103) 
n = l  n = l  

are the mean and standard deviation of the time series, and the time offset, 7, is 
defined by 

N 

sin (2wtn) 
tan(2wT) -- ,,=1 

N 

cos (Zwtn ) 
n = l  

(5.6.104) 

The offset ~- renders equation (5.6.102) identical to the equation we would derive if we 
attempted to estimate the harmonic content of a data set at frequency w using the 
linear least-squares model 

x(t) - A cos~t + B sinwt (5.6.105) 

In fact, Vani(zek's founding paper on the technique refers to it as a least-squares 
spectral analysis method. The method, which gives superior results to FFT methods, 
weights the data on a per point basis rather than on a time-interval basis. By not using 
weights that span a constant time interval, the method reduces errors introduced by 
unevenly sampled data. For further details on the Lomb periodogram, including the 
introduction of significance testing of spectral peaks, the reader is referred to Press et 
al. (1992; pp. 569-577). 

5.6.11 General spectral bandwidth and Q of the system 

Once the power spectral density, S(w), has been computed, the general spectral 
bandwidth BW may be determined from the three moments, mk, of the spectra 

C)G 

mk -- / ~ S ( w )  dw, 

0 
N/2 
E ~iS(~176 
i=0 

k - 0 ,  1,2 

(5.6.106) 
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where N/2  is the number of spectral estimates and Aw is the frequency resolution of 
the spectral estimates (cf. Masson, 1996). In particular 

B W  - (m2mo/m~ - 1) 1/2 (5.6.107) 

The bandwidth, AwB~V, of a particular spectral peak within an oscillatory system 
can be used to estimate the dissipation of the system at the peak (resonant) frequency, 
Wr. Specifically, the "Q" or Quality factor of the system measures the amount of energy 
stored in a linear oscillator compared to the amount of energy lost per cycle through 
frictional dissipation. The Q-factor characterizes the sharpness of the resonant 
frequency and is commonly used as a direct measure of tidal dissipation in the ocean. 
Suppose that the energy of a simple linear system passes through a maximum at 
resonance frequency and that the energy of the system falls to 50% of its maximum 
value at frequencies w ,~ w,. + ,'XWB~V/2. The Q of the system is then given by 

Q = w r / A w B ~  (5.6.108) 

For example, Wunsch (1972) finds Q ,~ 3.3 for an apparent resonant period of 14.8 h 
for the North Atlantic Ocean while Garrett and Munk (1971) obtain an global-wide 
lower bound of 25 for normal modes near the semidiurnal frequency. 

5.6.12 Summary of the standard spectral analysis approach 

In summary, PSD estimates for time series y(t) can be obtained as follows using the 
standard autocorrelation and periodogram approaches: 

(1) Remove the mean and trend from the time series. If block averaging is to be used 
to improve the statistical reliability of the spectral estimates (i.e. to increase the 
number of degrees of freedom), divide the data series into M sequential blocks of 
N'  data values each, where N ~ -  N / M  (see Section 5.6.7). 

(2) ~I'o partially reduce end effects (Gibbs' phenomenon) or to increase the series 
length to a power of two for FFT analysis, pad the data with K _< N zeros. Also 
pad the record with zeros if you wish to increase the frequency resolution or 
center spectral estimates in specific frequency bands. To further reduce end 
effects and side-lobe leakage, taper the time series using a Hanning (raised cosine) 
window, Kaiser-Bessel window, or other appropriate window (see Section 5.6.6). 

(3) Compute the Fourier transforms, YOCk),k = O, 1, 2, ..., N -  1, for the time series 
(for convenience, we have taken K - 0). For block-segmented data, calculate the 
Fourier transforms YmOrk) for each of the M blocks (m - 1, . . . ,  M) where 
k -  0, 1, ..., N ' - 1  and N ' <  N. To reduce the variance associated with the 
tapering in step 2, the transforms can be computed for overlapping segments. 

(4) Re-scale the spectra to account for the loss of "energy" during application of the 
window. That is, adjust the scale factor of Y(fk) (or YmOrk) in the case of smaller 
block size partitioning) to account for the reduction in spectral energy due to the 
tapering in step 2. For the Hanning window, multiply the amplitudes of the 
Fourier transforms by V/(8/3). The rescaling factors for other windows are listed 
in the right-hand column of Table 5.6.4. 
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(5) Compute the raw power spectral density for the time series (or for each block) 
where for the two-sided spectral density estimates 

1 
SyyOCk)--NAE[Y*(fk)Y~k)], k - 0 ,  1, 2, ..., N -  1 

(no block averaging) 

1 
SyyOCk;m) -- N A t  [Ym(fk)Ym(fk))' k = 0 ,  1, 2, ..., N / - 1  (5.6.109a) 

(block averaging) 

and for the one-sided spectral density estimates 

2 
G yy Ck ) --~--~[Y*(fk)y(]ck)], k --0, 1, 2, ..., N / 2 

(no block averaging) 

2 
Gyy (fk ; m ) -- - N ~  [Ym OCk ) Ym (fk ) ] , k = 0, 1, 2, ..., Nt/2 (5.6.109b) 

(block averaging) 

(6) In the case of the block-segmented data, average the raw spectral density estimates 
from the m blocks of data, frequency-band by frequency-band, to obtain the 
smoothed periodogram for Syy(fk) or GyyOrk). Remember, the trade-off for increased 
smoothing (more degrees of freedom) is a decrease in frequency resolution. 

(7) Incorporate 80, 90, and/or 95% confidence limits in spectral plots to indicate the 
statistical reliability of spectral peaks. Most authors use the 95% confidence 
intervals. 

We can illustrate some of the points in the above summary using the log-log spectra 
of sea-level oscillations (Figure 5.6.29) recorded over 14 days (20,160 min) in 1991 at 
Malokurilsk Bay on the west coast of Shikotan Island in the western Pacific. The main 
spectral peak is centered at a period of 18.6 min and corresponds to a wind-generated 
seiche amplitude of about 25 cm (Rabinovich and Levyant, 1992). All spectra have 
been obtained using segmented versions of the 14-day time series. Each time-series 
segment has been smoothed using a Kaiser-Bessel window with 50% overlap between 
segments and each segment has been treated as an independent time series. An FFT 
algorithm was used to calculate the spectrum for each segment. The smoothest 
spectrum (Figure 5.6.29a) is based on block averaged spectral estimates from roughly 
157 overlapping segments (,-,,20,160 min/128 min), the moderately smooth spectrum 
(Figure 5.6.29b) from the average of 39 overlapping segments, and the noisiest 
spectrum (Figure 5.6.29c) from the average of 10 overlapping segments. Taking into 
account the 50% overlap between segments and the fact that there are two degrees of 
freedom (DOF) per raw spectral estimate, there are 628 (= 157 x 4), 154, and 36 DOF 
for the three spectra, respectively. The smoothed spectrum in Figure 5.6.29(d) is 
derived using a slightly different approach. Although the segment lengths are the 
same as those in Figure 5.6.29(c) (i.e. 2048 min), the number of DOF is increased with 
increasing frequency, ~. In this sliding scale, the lowest frequency range uses 36 DOF 
(as with Figure 5.6.29c), the next frequency band averages together the spectra for 
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Figure 5.6.29. Spectra of sea-level oscillations recorded by a bottom-pressure gauge in Malokurilsk Bay 
on the west coast of Shikotan Island. Time-series length T = NAt ,  where N - 20,160 and 
A t  = 1 rain. Segment lengths are T+ = MAt ,  M << N. Each time-series segment has been smoothed 
with a Kaiser-Bessel window with 50% overlap between segments. Block averaging has been used to 
smooth the spectral estimates. (a) Highly smoothed spectrum with M = 128 (27), DOF = 628; (b) 
moderately smoothed spectrum with M = 512 (29), DOF = 154; (c) weakly smoothed spectrum with M 
= 2048 (211), DOF = 36; (d) same as (c) except that DOF = 36 applies to the lowest frequency range 
only. For f >_ 6 • 10 -2 cycles/min, the number of spectral estimates averaged together increases as 
3 • 36, 5 • 36, and 7 • 36, for each of the next three frequency ranges. (Courtesy ofA. Rabinovich.) 

three adjacent frequencies to give 108 DOF, the next averages together the spectra for 
five adjacent frequencies to give 180 DOF, and so on. 

As indicated by Figure 5.6.29, increasing the number of frequency bands averaged 
in each spectral estimate enhances the overall smoothness of the spectrum and 
improves the statistical reliability for specific spectral peaks. The number of DOFs 
increases and the confidence interval narrows. The penalty we pay for improved 
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statistical confidence is reduced resolution of the spectral peaks. As in Figure 
5.6.29(a), too much smoothing diminishes our ability to specify the frequency of 
spectral peaks and washes out peaks linked to some of the weaker seiches. Because 
each time-series segment is so short, we also lose definition at the low-frequency end 
of the spectrum. As indicated by Figure 5.6.29(c), too little smoothing leads to a noisy 
spectrum for which few spectral peaks are associated with any physical processes. The 
sliding DOF scale in Figure 5.6.29(d) is a useful compromise. 

Covariance function: Since the covariance function, Cyy(~), and the autospectrum are 
Fourier transform pairs, the above analysis can be used to obtain a smoothed or 
unsmoothed estimate of the covariance function. To do this, first calculate the Fourier 
transform Y(f) of the time series, and determine the product SyyOf)  = 

N-1At[Y*(f)Y(f)]. Then take the inverse Fourier transform (IFT) of the auto- 
spectrum, Syy(/), to obtain the covariance function, Cyy(T). If the spectrum is un- 
smoothed prior to the IFT (or IFFT if the FFT was used), we obtain the raw 
covariance function. If, on the other hand, the autospectrum is smoothed prior to the 
above integral using one of the spectral windows, such as the Hanning window, the 
covariance function also will be a smoothed function. 

A word of caution: Although everyone agrees on the basic formulation for the discrete 
Fourier transform (DFT) and the inverse discrete Fourier transform (IDFT), there are 
several ways to normalize the relations using the number of records, N. In our defini- 
tions, (5.6.10) and (5.6.12), N appears in the denominator of the inverse discrete Fourier 
transform. Some authors normalize using 1/N in the DFT only while others insist on 
symmetry by using 1/v/N in both DFT and its inverse. User alert: When using 
"canned" programs to obtain DFTs and IDFTs, ensure that you know how the trans- 
forms are defined and adapt your analysis to fit the appropriate processing routines. 

5.7 SPECTRAL ANALYSIS (PARAMETRIC METHODS)  

If the analytical model for a time series was known exactly, a sensible spectral 
estimation method would be to fit the model spectrum to the observed spectrum and 
determine any unknown parameters. In general, however, oceanic variability is too 
complex to admit simple analytical models and parametric spectral estimates over the 
full frequency range of the data series. In addition, the imposition of an overly 
simplified spectral model could seriously degrade any estimation. On the other hand, 
it is reasonable that relatively simple spectral models might adequately reflect the 
system dynamics over limited frequency bands. Under some very general conditions, 
any stationary series can be represented in closed form by a statistical model in which 
the corresponding spectrum is a rational function of frequency (i.e. a ratio of two 
polynomials in w). 

If the time series under investigation is long relative to the time scales of interest, 
and if the spectrum is not overly complicated and does not have too large a dynamic 
range, the simple smoothed periodogram technique will probably yield adequate 
results. At a minimum, it will identify the major features in the spectrum. For shorter 
time series or in studies of fine spectral structure, other techniques may be more 
applicable. One such spectral analysis technique was developed by Burg (1967, 1972) 
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who showed that it was possible to obtain the power spectrum by requiring the 
spectral estimate to be the most random or have the maximum entropy of any power 
spectrum which is consistent with the measured data. This leads to a spectral estimate 
with a high frequency resolution since the method uses the available lags in the 
autocovariance function without modification and makes a nonzero estimate (pred- 
iction) of the autocorrelation function beyond those which are routinely calculated 
from the data. Because the spectral values are computed using a maximum entropy 
condition, the resulting spectral estimates are not accurate in terms of spectral 
amplitude. 

The most popular of the "modern" parametric techniques is the Autoregressive power 
spectral density (AR PSD) model whose origins are in economic time series forecasting 
and statistical estimation. Autoregressive estimation was introduced to the earth 
sciences in the 1960s where it was originally applied to geophysical time-series data 
under the name maximum entropy method (MEM). The duality between AR and MEM 
estimation has been thoroughly explored by Ulrych and Bishop (1975). Autoregressive 
spectral estimation is attractive because it has superior frequency resolution compared 
to conventional FFT techniques. As an example of the frequency resolution capability, 
consider the 14-year time series of average monthly air temperature for New York city 
(Figure 5.7.1a). The unsmoothed periodogram and three smoothed periodograms 
reveal a broad spectral peak centered at a period of one year (Figure 5.7.1b). This 
compares to the much sharper annual peak obtained via AR estimation (Figure 
5.7.1c). The results reveal another important difference between the two methods. 
With the nonparametric periodogram approach, we can determine confidence limits 
for the spectral peaks while for the parametric method the significance of the peaks is 
unknown. For example, the maximum entropy method is good for finding the location 
of spectral peaks but is not reliable for computing the correct spectral energy at those 
peaks. (The periodogram smoothing in Figure 5.7.1(b) was performed using a Parzen 
window with truncation values N - 16, 32, and 64; the weights for these windows are 
w(n) = 1.0 - [2n/N[ 2, with 0 _< In] _< �89 

In general, autoregressive and maximum entropy PSD estimation are not as widely 
used in oceanography as traditional spectral analysis methods. The former find their 
great~st application in analytical climate modeling and in wavenumber spectral 
estimation. Modern parametric techniques are good so long as the model is good. On 
the other hand, if the model is false, the resulting spectrum estimate can be highly 
misleading. It follows that if you have no reason for believing a specific model you are 
better served using a nonparametric model. For this reason, we limit our presentation 
to the essential elements of the two methods. The reader is directed to Marple (1987) 
for a thorough discussion of the topic, including an introduction to Fourier transform 
methods of spectral analysis. 

5.7.1 Some basic concepts 

Many deterministic and stochastic discrete-time series processes encountered in 
oceanography are closely approximated by a rational transfer model in which the 
input sequence {xn} and the output sequence {Yn}, which is meant to model the input 
data, are related by the linear difference relation 

q P 

Yn - ~ bkxn-k - ~ amYn-m (5.7.1) 
k - 0  m-1 
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Figure 5.7.1. (a) Time series of monthly average air temperature for New York city (1946-1959); (b) the 
unsmoothed (raw) periodogram and three smoothed periodograms for Parzen windows with truncation 
lengths of 16, 32, and 64 months; and (c) an autoregressive spectral estimate of (a) showing the sharp 

peak at 12-months period. (From Pagano, 1978.) 
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Here,yn is shorthand notation fory(nAt),  also written asy(n). In its most general form, 
the linear model (5.7.1) is termed an autoregressive moving average (ARMA) model.  The 
power spectral density (PSD) of the ARMA output process is 

PARMA(f) = 0"2 At[A (f) /B( f )]  2 (5.7.2) 

where o -2 is the variance of the applied white-noise driving mechanism and 0.2 At is the 
PSD of the noise for the Nyquist interval - 1 / ( 2 A t )  _<f _< 1/(2At). Here 

A(f) = c~[ exp (i2rrfAt)], B(f) =/3[ exp (i2rrfAt)] (5.7.3) 

where the coefficients c~,/3 are defined in terms of the z-transform, X(z), of the variable 
z = exp (i27rfAt)[= exp (i2~-nk/N) in discrete form] where k, n = 0, 1, . . . ,  N -  1 

N - 1  

X(z)  - ~ XnZ -n (5.7.4) 
n=0 

which maps a real-valued sequence into a complex plane. Note that equation (5.7.4) is 
defined through negative powers of z, the convention used in electrical engineering. 
Geophysicists expand in positive powers ofz (z +n) but define z - exp(-izTrfAt) so the 
results are the same. The z-transform of the autoregressive branch is 

c~(z) - ~ anz -n (5.7.5a) 
n 

while that of the moving average branch is 

/~(Z) -- ~ bn z-n 
n 

(5.7.5b) 

Specification of the parameters {ak}, termed the autoregressive coefficients, the 
parameters {bk}, termed the moving-average coefficients, and the variance 0.2 is 
equivalent to specifying the spectrum of the process {Yn}. Without loss of generality, 
one can assume ao = 1 and bo = 1 since any gain of the system (5.7.1) can be 
incorporated into 0"2. If all the {ak} terms except ao - 1  vanish then 

q 

y~ - ~-~bkxn-k (5.7.6) 
k=0 

and the process is simply a moving average of order q, and 

P MA (f ) -- 0"2 At ~4 (f )12 (5.7.7) 

This model is sometimes called an all-zero model since spectral peaks and valleys are 
formed through zeros of the function A(/). If all the {bk} terms except bo = 1 vanish 
then 

p 

Yn - ~ amXn--m -}-Cn (5.7.8) 
m=l  

and the process is strictly an autoregressive model of order p. The process is called AR 
in the sense that the sequence Xn is a linear regression on itself with en representing 
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the error. With this model, the present valueyn is expressed as a weighted sum of past 
values plus a noise term. The PSD is 

0 .2 At 
PAR(f) = ,B...-------- (])1 (5.7.9) 

In the engineering literature, this model is sometimes called an all-pole model since 
narrow spectral peaks can be sharply delineated through zeros in the denominator. 

5.7.2 Autoregressive power spectral estimation 

The discrete form of an autoregressive model y(t) of order p is represented by the 
relationship 

y(n) - aty(n - 1) +a2y(n - 2) + ... +apy(n - p )  + ~(n) (5.7.10) 

where time t = nAt ,  the a~ (k - 1, ..., p) are constant coefficients, and e(t) is a white- 
noise series (usually called the innovation of the AR process) with zero mean and 
variance o 2. Another interpretation of the AR process links y(t) with a value that is 
predicted from the previous p - 1 values of the process with a prediction error equal to 
e(t). Thus, the ak (k = 1, .. . ,  p) represent a p-point prediction filter. If Y(z) is the z- 
transform ofy(n) then 

p 

Y(z) - Z y ( n ) z n  (5.7.11) 
n=0 

and 

Y(z) - Y(z)(alz  + a 2 z  2 + . . .  + a p Z  p )  - -  D(z) (5.7.12) 

so that 

Iy(z) 12 - -  ID(z)l 2 
I1 - a l z  - a 2 z  2 . . .  - apzP] 2 ( 5 . 7 . 1 3 )  

Substituting z - -  exp (-i27rfAt) we obtain half of the true power spectrum. If the 
autoregression is a reasonable model for the data, then the autoregressive power 
spectral density estimate based on (5.7.9) is 

o2At 
PAR(f) = (5.7.14) 

1 + ~ ak exp (-i27rfkAt) 
k=l  

To find the PSD we need only estimate three things: (1) the autoregressive parameters 
{al, a2, ... , a/,}; (2) the variance, a 2, of the white-noise process that is assumed to be 
driving the system; and (3) the order, p, of the process. The limitations of the AR model 
are the degrading effect of observational noise, spurious peaks, and some anomalous 
effects which occur when the data are dominated by sinusoidal components. Unlike 
conventional Fourier spectral estimates, the peak amplitudes in AR spectral estimates 
are not linearly proportional to the power when the input process consists of sinusoids in 
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noise. For high signal-to-noise ratios, the peak is proportional to the square of the power 
with the area under the peak proportional to power. 

5. 7.2.1 Autoregressive parameter  estimation 

Yule-Walker equations: If the autocorrelation function, Ryy(k), is known exactly, we can 
find the {ak} by the Yule-Walker equations. This method relates the AR parameters to 
the known (or estimated) autocorrelation function of y(n) 

N-k N 1 1 
Ryy(k) = ~ Z  [[x(n + k) - 2]Ix(n) - 21; 2 = x(n) (5.7.15) 

n=l n-1 

There are other methods of estimating Ryy but this estimator has the attractive 
property that its mean-squared error is generally smaller than that of other estimators 
(Jenkins and Watts, 1968). Since it is generally assumed that the mean ~ has been 
removed from the data, the autocovariance and autocorrelation functions are 
identical. To get the AR parameters, one need only choose p equations from the 
Yule-Walker equations for k > 0, solve for {al, a2, ... ,ap}, and then find cr 2 from (2.39) 
for k - 0. The matrix equation to find the ais and o 2 is 

R ~  ( O ) Ryy ( - 1 )  ... Ryy ( - p  ) 
R~(1) Ryy(O) ... Ryy[-(p - 1)] 

Ryy (p ) Ryy (p - 1) ... Ryy(0) 

1 

a l  
~ 1 7 6 1 7 6  

% 

o~ 
0 

~  

"0' 

(5.7.16) 

Thus, to determine the AR parameters and the variance ~ one must solve (5.7.16) 
using the p + 1 autocorrelation lags, Ryy(O), ... , Ryy(p), where Ryy( -k )  = Ryy(k). 

Solutions to the Yule-Walker matrix equation can be found via the computationally 
efficient Levinson-Durbin algorithm which proceeds recursively to compute the 
parameter sets {a11, O~l},{a21, a22, o~2 }, ..., {apl,ap2, ..., app, a~}. The final set at order 
p (th~first  subscript) is the desired solution. The algorithm requires p2 operations as 
opposed to the O(p 3) operations of Gaussian elimination. More specifically, the 
recursion algorithm gives 

-Ryy (1) 
all = Ryy(O) (5.7.17a) 

a~ = (1 -lallj2)Ryy(O) (5.7.17b) 

with the recursion for k - 2, 3, ..., p given by 

.R(k-J) akk = 0"~ (k) + ak_ld yy 
j=I 

(5.7.18a) 

aki = -ak-l , i  + akk(ah-l,h-i)* (5.7.18b) 

o-~ - ( 1 -  ]ahk[2)o-~_l (5.7.18c) 

Burg algorithm: Box and Jenkins (1970) point out that the Yule-Walker estimates of 
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the AR coefficients are very sensitive to rounding errors, particularly when the AR 
process is close to becoming nonstationary. The assumption that y (k ) -  0, for [kl > p 
leads to a discontinuity in the autocorrelation function and a smearing of the 
estimated PSD. For this reason, the most popular method for determining the AR 
parameters (prediction error filter coefficients) is the Burg algorithm. This algorithm 
works directly on the data rather than on the autocorrelation function and is subject to 
the Levinson recursion (5.7.18b). As an illustration of the differences in the YW and 
the Burg estimates, the respective values of al~ for the series y(tk) = y(k) are 

a l l  - -  

a l l  = 

P 

~_,y(k)y(k - 1) 
k---2 

P 
~'~ y (k) 2 
k = l  

P 
~-~y(k)y(k - l) 
k=2 

P 
1 2 2 l 2 ~x 1 + ~~y(k) +~x~ 

k = l  

, for the Yule-Walker estimate 

, for the Burg estimate 

(5.7.19) 

Detailed formulation of the Burg algorithm is provided by Kay and Marple (1981; 
p. 1392). Again, there are limitations to the Burg algorithm, including spectral line 
splitting and biases in the frequency estimate due to contamination by rounding 
errors. Spectral line splitting occurs when the spectral estimate exhibits two closely 
spaced peaks, falsely indicating a second sinusoid in the data. 

Least squares estimators: Several least squares estimation procedures exist that 
operate directly on the data to yield improved AR parameter estimates and spectra 
than the Yule-Walker or Burg approaches. The two most common methods use 
forward linear prediction for the estimate, while a second employs a combination of 
forward and backward linear prediction. Ulrych and Bishop (1975) and Nuttall (1926) 
independently suggested this least squares procedure for forward and backward 
prediction in which the Levison recursion constraint imposed by Burg is removed. 
The least squares algorithm is almost as computationally efficient as the Burg al- 
gorithm requiring about 20 more computations. The improvement by the LS approach 
over the Burg algorithm is well worth the added computation time. Improvements 
include less bias in the frequency estimates, and absence of observed spectral line 
splitting for short sample sinusoidal data. 

Barrodale and Erickson (1978) provide a FORTRAN program for an "optimal" 
least-squares solution to the linear prediction problem. The algorithm solves the 
underlying least-squares problem directly without forcing a Toeplitz structure on the 
model. Their algorithm can be used to determine the parameters of the AR model 
associated with the maximum entropy method and for estimating the order of the 
model to be used. As illustrated by the spectra in Figure 5.7.2, this approach leads to a 
more accurate frequency resolution for short sample harmonic processes. In this case, 
the test data were formed by summing 0.03 and 0.2 Hz sine waves generated in single 
precision and sampled 10 times per second. The reader is also referred to Kay and 
Marple (1981; p. 1393) for additional details. 
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Figure 5. 7.2. Maximum entropy method spectra obtained using (a) the Burg and (b) the Barrodale and 
Erickson algorithms. Signal consists of a combined 0.2 and 0.03 Hz (cps) sine wave. Spectra are plotted 

for increasing numbers of coefficients, p. (From Barrodale and Erickson, 1978.) 

5. 7.2.2 Order o f  the autoregressive process 

The order p of the autoregressive filter is generally not known a priori and is 
acknowledged as one of the most difficult tasks in time series modeling by parametric 
methods. The choice is to postulate several model orders then compute some error 
criterion that indicates which model order to pick. Too low a guess for the model order 
results in a highly smoothed spectral estimate. Too high an order introduces spurious 
detail into the spectrum. One intuitive approach would be to construct AR models 
with increasing order until the computed prediction error power ~ reaches a 
minimum. Thus, if a process is actually an AR process of order p, then ap. 1, k = apk for 
k = 1, 2, . . . ,  p. The point at which apk does not change would appear to be a good 
indicator of the correct model order. Unfortunately, both the Yule-Walker equations 
and Burg algorithm involve prediction error powers 

~k - -  O'k2-1 [1 --  akk] 2] (5.7.20a) 

that decrease monotonically with increasing order p, so that as long as lakh] 2 is 
nonzero (it must be <_ 1) the prediction error power decreases. Thus, the prediction 
error power is not sufficient to indicate when to terminate the search. Alternative 
approaches (Kay and Marple, 1981) have been proposed by Akaike (termed the final 
prediction error, FPE, and the Akaike information criterion, AIC), and by Parzen 
(termed the criterion autoregressive transfer function). The Akaike information 
criterion determines the model order by minimizing an information theoretic 
function. If the process has Gaussian statistics, the AIC is 
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Summary of algorithms 

, m  

Method Model applied Advantages Disadvantages 

Periodogram method Sum of harmonics 
using FFT or direct (sines and cosines). 
Fourier transform No specific model 

needed. 

Autoregressive, Autoregressive 
Yule-Walker (all-pole) process. 
algorithm. Specific model. 

Autoregressive, Autoregressive 
Burg algorithm. (all-pole) process. 

Specific model. 

Autoregressive, least- Autoregressive 
squares method. (all-pole) process. 

Specific model. 

1. Uses harmonic least 
squares fit to the data; 
2. output S(f) directly 
proportional to power; 
3. most computationally 
efficient; 
4. well-established 
methodology; 

1. Frequency resolution 
A f ~. l I T  dependent only on 
record length, T; 
2. poor performance for short 
data records; 
3. side-lobe leakage distorts 
spectra if appropriate 
windowing not done; 

5. confidence intervals easily windowing reduces frequency 
computed; resolution, A f;  
6. integral of SO') over 4. must average spectral 
frequency band Af is equal estimates to improve statistical 
to the variance of the reliability. 
signal in that band. 
7. easily generalized to cross- 
spectra and rotary spectra 
analysis. 
1. Improved spectral 
resolution over Fourier 
transform methods; 
2. sharp spectral peaks; 
3. no side-lobe leakage 
problems; 
4. minimum phase (stable) 
linear prediction filter 
guaranteed if biased lag 
estimates computed; 
5. related to linear prediction 
analysis and adaptive filtering. 
1. Improved resolution over 1. Model order, p, must be 
Fourier transform methods, specified; 
Uses a constrained recursive 2. spectral line splitting can 
least squares approach 
2. no side-lobe leakage 
problems; 
3. high resolution for low 
noise signals; 
4. good spectral fidelity for 
short data series; 
5. no windowing implied; 
6. Stable linear prediction 
filter guaranteed. 
1. Sharper spectra than for 
other AR methods 
2. no side-lobes; 
3. good spectral fidelity for 
short data series; 
4. no windowing; 
5. no line splitting; 
6. uses exact recursive least 
squares solution with no 
constraint. 

, , ,  , , ,  

1. Model order, p, must be 
specified; 
2. spectral line splitting 
occurs; 
3. implied windowing distorts 
spectra; 
4. confidence intervals not 
readily computed. 

1. Model order must be 
specified; 
2. stable linear prediction 
filter not guaranteed, though 
stable filter results in most 
cases. 

occur; 
3. confidence intervals not 
readily computed. 
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AIC(p) - In (e~) + 2(p + 1)/N (5.720b) 

where ~ is the prediction error power and N is the number of data samples. The 
second term represents the penalty for the use of extra autoregressive coefficients that 
do not result in a substantial reduction in the prediction error power. The order p is 
the one that minimizes the AIC. 

5. 7.2.3 Maximum entropy method (MEM) 

The only constraint on the AR method is that the data yield the known autocorrelation 
function Ryy(k) for the interval 0 < k < p. The assumption that y(k) - 0, for ]kl > P 
leads to a discontinuity in the autocorrelation function and a smearing of the estimated 
power spectral density. The MEM was designed, independently of autoregressive 
estimation, to eliminate the distortion of the spectrum caused by the truncated Ryy(k). 
By adding a second constraint to improve the spectral estimation, the method gets away 
from the problems with the Yule-Walker algorithm. In essence, the MEM is a way of 
extrapolating the known autocorrelation function to lags k > p, which are not known. In 
words, we assume that {Ryy(O), ..., Ryy(p)} are known and find a logical way to extend to 
lags {Ryy(p + 1), ...}. As it turns out, the power spectral estimate for the MEM approach 
is equivalent to the power spectral estimate for the AR process. 

In general, there exist an infinite number  of possible extrapolations. Burg (1968) 
argued that preferred extrapolation should do two things: (1) Yield the known Ryy for 
0 < k _< p; and (2) generate an extrapolated Ryy for k > p that causes the time series to 
have maximum entropy under the constraint (1). The time series that results is the 
most random one which adheres to the known Ryy for the first p + 1 lags. Altern- 
atively, we can say that PSD is the one with whitest noise (flattest spectrum) of all 
possible spectra for which {Ryy(O), ..., Ryy(p)} is known. The reason for choosing the 
maximum entropy criterion is that it imposes the fewest constraints on the unknown 
time series by maximizing its randomness thereby causing minimum bias and opera- 
tor intervention. For a Gaussian process, the entropy per sample is proportional to 

1~2At 

/ 
-1~2At 

ln[Py(f)] df (5.7.21) 

where Py(f) is the PSD ofy,,. The spectrum is found by maximizing (5.7.21) subject to 
the constraint that the p + 1 known lags satisfy the Wiener-Khinchin relation 

1~2At 

/ 
-1~2At 

Py (f)e-i2rrfnAt d f  = Ryy (n), n - 0, 1, . . . ,p  (5.7.22) 

The solution is found using the Lagrange multiplier technique (see Ulrych and 
Bishop, 1975) as 

er2At (5.7.23) 
Py( f )  - p 2 

1 + ~ aph exp (-i2rrfkAt) 
k=l 
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where {apl, ..., app} and o~ are just the order-p predictor parameters and prediction 
error power, respectively. With knowledge of {Ryy(O), Ryy(1), ..., Ryy(p)} the power 
spectral density (PSD) of the maximum entropy method (MEM) is equivalent to the 
PSD of the autoregressive method. That is, the MEM spectral analysis is equivalent to 
fitting an AR model to the random process. It is indeed interesting that the represent- 
ation of a stochastic process by an AR model is that representation that exhibits 
maximum entropy. The duality of the AR model and MEM has enabled workers to 
apply the large body of literature on AR time-series analysis to overcome short- 
comings of the MEM. 

The estimation of the MEM spectral density requires a knowledge of the order of 
the AR process that we use to model the data. The importance of correctly estimating 
the order p is illustrated using the AR process Yn -y( t~)  at times tn = nat  

Yn = 0.75Yn-~ - 0.5yn-2 + Cn (5.7.24) 

2 b u t  E[~(t)e'(t)] - 0 with noise variance ~ - 1 (Figure 5.7.3a). Here E[y(t)e(t)]- ~ ,  
for any other additive noise, d. As indicated by Figure 5.7.3(b), which compares the 
theoretical power of a specified second-order AR process with the power spectral 
density computed from a realization of this process using p = 2 and p - 11 (Ulrych 
and Bishop, 1975), the correct choice ofp is vital in obtaining a meaningful estimate of 
the power spectrum of the process. The peak value and the width of the spectral line of 
the MEM power spectral density estimate also may have considerable variance in the 
MEM estimates. 

Although the MEM has numerous advantages over traditional nonparametric 
spectral techniques, especially for short data series, the usefulness of the approach is 
diminished by the lack of a straightforward criterion for choosing the length (order) of 
the prediction model. Too short a length results in a highly smoothed spectrum 
obviating the resolution advantages of the MEM, whereas an excessive length intro- 
duces spurious detail into the spectrum. 

Confidence intervals: A major shortcoming of MEM is the lack of a mathematically 
consistent variance estimator (confidence interval) for the spectral density. One 
approach is to approximate the confidence bounds in the same way that we compute 
the bounds in traditional multivariate spectral analysis (i.e. using a chi-square 
variable with u degrees of freedom) under the assumption that the equivalent number 
of degrees of freedom is given by u = N/p, where N the number of data points in the 
time series and p is the order of the model (Privalsky and Jensen, 1993, 1994). The 
order p should be chosen on the basis of objective criteria such as Akaike's 
information criterion, Parzen's criterion and so on (see L~tkepohl, 1985). 

5. 7.2.4 An autoregressive model of global temperatures 

One way to determine the effect of initial conditions and random noise on the global 
temperature predictions of computer-simulated general circulation models (GCMs) is 
to obtain a control realization, modify the initial conditions and noise, obtain a second 
realization and compare results. Since this could take several months of super- 
computing time, a more practical approach is to employ a model of the global air 
temperature series, T(t), derived by Jones (1988) (Figure 5.7.4). If we assume that the 
sensitivity of GCMs to changing conditions is similar to that of a stationary 
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Figure 5.7.3. Maximum entropy spectra. (a) Time series for the second-order A R  process 
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and Bishop, 1975.) 

autoregressive model, then marked changes in the AR model that result from slight 
changes in the initial conditions or inherent noise are evidence that GCMs are too 

sensitive to these parameters to be reliable. 
If Zn - Z(tn) represents the temperature deviation (departure from the long-term 

mean) at year t,, then the maximum likelihood fourth order AR model for the 

temperature data in Figure 5.7.4 is 

Zn = 0.669Zn-1 - 0.095Zn-2 + 0.104Zn-3 + 0.247Zn-4 + Cn (5.7.25) 
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where Zn = T,, - T, and Cn is an uncorrelated white-noise series with zero mean and 
variance equal to 0.0115~ 2 (Tsonis, 1991; Gray and Woodward, 1992). In general, we 
can state that for any AR process, the initial values will have little effect on forecasts if 
the sample size is large relative to the order of the process. For this reason, AR 
processes are often known as "short memory" processes. In the above model, the 
correlation between Z(t) and Z(t + mat )  is 0.9(0.96)', for values of m greater than 
about five. For example, the correlation between Z(t) and Z(t + 30At) is 0.27, while 
that between Z(t) and Z(t + 50At) is 0.14. These correlations imply that, even if we 
started the model with the same initial values Z1, ..., Z4, different realizations of the 
model would typically have low cross-correlation after 30 years and possess very little 
similarity beyond 50 years (Figure 5.7.5a). The dissimilarity is associated with the 
stochastic nature of the noise c(t) which quickly decorrelates the present value of the 
model from its past values. The fact that the two series converge to a similar level near 
t = 100 years is not an indication that they are merging since extending these 
realizations causes them to depart from one another. 

To show the importance of the noise, rather than the initial conditions, Gray and 
Woodward generated two samples with different starting values but with the same 
noise sequence. This was intended to mimic a specified set of random conditions 
driving the weather but having different starting values. As revealed by Figure 
5.7.5(b), the realizations begin to merge by year 30, demonstrating their insensitivity 
to the initial conditions. A further point is that for stationary AR processes, the 
forecast function is only a function of the sample mean and the last four observations. 
Since the starting values are independent of the last four observations and small 
changes in the starting conditions have little effect on the sample mean for a long time 
series, the forecasts from such a model will be insensitive to changes. In closing their 
article, Gray and Woodward note that conventional autoregressive moving average 
(ARMA) modeling methodology indicates that the temperature time series should first 
be differentiated. Application of a variety of techniques suggests an order 10 (AR(10)) 
model as the "optimum" model for the differentiated data which gives rise to an 
AR(l l)  model for the original time series, not an AR(4) model used in the analysis. 
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Figure 5. 7.4. The annual global mean air temperatures from 1881 to 1988 as deviations (~ from the 
1951-1970 average. (From Gray and Woodward, 1992.) 
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Lastly, Tsonis (1992) replies that it is not appropriate to change the noise of the signal 
without also changing the initial conditions. 

5.7.3 M a x i m u m  l i k e l i h o o d  s p e c t r a l  e s t i m a t i o n  

As first demonstrated by Capon (1969), spectra can be defined using the maximum 
likelihood procedure. Instead of using a fixed window to operate on the autocorrel- 
ation function, the window shape is changed as a function of wavenumber or 
frequency. The window is designed to reject all frequency components in an optimal 
way, except for the one frequency component which is desired. 

Rather than go through the details of defining the procedure for the maximum 
likelihood spectrum, we offer here comparisons between the traditional method (in 
this case, represented by a spectrum computed using a Bartlett window), a maximum 
likelihood spectrum, and a spectrum computing using the maximum entropy 
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Figure 5.7.5. Two simulated realizations from the AR(4) model given by equation (5.7.25). (a) Same 
starting values but different and independently derived noise sequence; (b) different starting values but 

the same noise sequence. (From Gray and Woodward, 1992.) 



478 Data  Analysis  Methods in Physical Oceanography 

procedure (Figure 5.7.6). As the figure illustrates, the maximum entropy spectrum has 
narrow peaks while both the Bartlett window and maximum likelihood method yield 
much broader spectral peaks. Note also that, except for the maximum spectral values, 
the maximum entropy spectrum significantly underestimates the spectral estimates 
for the 0.15 Hz signal and white noise. The maximum entropy spectrum also has small 
side-lobe energy that is dramatically less than the off-peak energy in either of these 
two spectra. The maximum likelihood spectral values are also systematically lower 
than those using the standard method with a Bartlett window. A similar comparison is 
shown in Figure 5.7.7, which first shows a time series of a 1 Hz (1 cps) sinusoid with 
10% white noise added to it (Figure 5.7.7a). The power spectrum computed as the 
square of the Fourier coefficients is displayed in Figure 5.7.7(b). This can be 
compared with the narrow-peaked maximum entropy spectrum in Figure 5.7.7(c). The 
peaks are located at the same frequency representative of the 1 Hz, but the maximum 
entropy spectrum is extremely narrow while the Fourier power spectrum has a very 
wide peak. It is easy to see that the maximum entropy method seriously 
underestimates the spectral values at frequencies other than the main peak. 

5.8 C R O S S - S P E C T R A L  A N A L Y S I S  

Estimation of autospectral density functions deals only with the frequency character- 
istics of a single scalar or vector time series, x(t). Estimation of cross-spectral density 
functions performs a similar analysis but for two time series, Xl(t) and x2(t), spanning 
concurrent times, 0 _< t _< T. Although we often use time series from similar distri- 
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Figure 5.7.6. Power spectral estimates for a signal consisting of white noise plus two sine waves with 
frequencies O. 15 and 0.2 Hz (cps). Solid line: spectrum using the autocovariance method with a Bartlett 
smoothing window. Dashed line: Maximum likelihood spectral estimate. Dash-dot line: maximum 

entropy spectrum. (From Lacoss, 1971.) 
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butions, such as the velocity records from nearby moorings, cross-spectra may also be 
computed for two completely different quantities. In that sense, we can mix apples and 
oranges. For example, the cross-spectrum formed from the time-varying velocity 
fluctuations, Xl( t )= u'(t), and the temperature fluctuations, x2(t)= T'(t), measured 
over the same time span at the same location gives an estimate of the local eddy heat 
flux, q' = pCpu'T'(t), as a function of frequency (p is the density and Cp the specific 
heat of seawater). Because autospectra involve terms like xlx~, where the asterisk 
denotes complex conjugate, the spectra are real-valued and all phase information in 
the original signal is lost. Cross-spectra, on the other hand, involve terms like XlX~ and 
are generally complex quantities whose real and imaginary parts take into account the 
correlated portions of both the amplitudes and relative phases of the two signals. 

There are two ways to quantify the real and imaginary parts of cross-spectra. One 
approach is to write the cross-spectrum as the product of an amplitude function, 
called the cross-amplitude spectrum, and a phase function called the phase spectrum. The 
sample cross-amplitude spectrum gives the distribution of co-amplitudes with fre- 
quency while the sample phase spectrum indicates the angle (or time) by which one 
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series leads or lags the other series as a function of frequency. Alternatively, the cross- 
spectrum can be decomposed into a coincident spectral density function (or co-spectrum), 
which defines the degree of co-oscillation for those frequency constituents of the two 
time series that fluctuate in-phase, and a quadrature spectral density function (or quad- 
spectrum), which defines the degree of co-oscillation for frequency constituents of the 
two series that co-oscillate but are out-of-phase by +90 ~ Statistical confidence 
intervals can be provided for normalized versions of the cross-spectral estimates. 

5.8.1 Cross-correlation functions 

In Section 5.6.3.1, we showed that the autocovariance function, Cxx(r), and the 
autospectrum, Sxx(f), are Fourier transform pairs. Similarly, for separate time series 
Xl(t) and xz(t), the cross-covariance function, CxlxZ(r), and the cross-spectrum, 
Sxlx2(f), are transform pairs. Thus, we can take the Fourier transform of the lagged 
cross-covariance function to obtain the cross-spectrum or we can take the inverse 
Fourier transform of the cross-spectrum to obtain the cross-covariance function. As a 
prelude to cross-spectral analysis, it is worth presenting a brief summary of cross- 
correlation functions commonly used in oceanography for scalar and vector time 
series. The cross-correlation functions tell us how closely two records are "related" in 
the time domain, whereas the cross-spectrum tells us how oscillations within specific 
frequency bands are related in the frequency domain. 

Using the abbreviation C12(r) for Cxlx2(7-), the cross-covariancefunction is defined as 

N-B'/ 

1 ~ xl (nAt)x2(nAt + "r) C12-7--( ) --N--raN=0 (5.8.1) 

where r = mat is the lag time for m = 0, 1, ..., M, M << N. Division of (5.8.1) by the 
product Cl1(0)C22(0), corresponding to the autocovariance functions for each series at 
zero lag, gives the cross-correlation coefficient function for the data samples 

P12 (7-) -- C12 (7) (5.8.2) 
[Cll (0)C22 (0)] 1/2 

The time series Xl(t) and x2(t) represent any two quantities we wish to compare. They 
also may represent quantities measured at different depths or locations for the same 
time period. For example, Kundu and Allen (1976) used the lagged covariance 
function 

Vl(Xl,t)vl(x2,t + 7-) 

p(X1,X2,'/-)- [(Vt(Xl,t))2(Vt(XZ,t))2]l/2 
N-m 

1 ~v1(x l ,n)v l (x2 ,n+m ) 
N - m , =  1 

L (V' (X 1, rt)) 2 (7.)' (X2, rt)) 2 
N n=l 

m = 0 ,  1 , . . . , M < < N  

(5.8.3) 

to examine the correlation between the longshore (v) components of current for 
different coastal sites separated by a distance d = ]Xl - x2]. Moreover, if "/'max is the 
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lag which gives the maximum correlation, then the speed of propagation, c, of the 
coherent signal in the direction d = x l - x 2  is c =  [d[/rrnax, the direction of 
propagation determined from the sign of Tma x (Figure 5.8.1). In Figure 5.8.1, the 
lagged correlations between time series of low-pass filtered longshore currents, v(x, t), 
at different sites along the continental shelf are used to examine the poleward 
propagation of low-frequency coastal-trapped waves. Results in the figure are based on 
currents at 60-m depth. Letters refer to pairs of stations used; e.g. C - P is the lag 
between the Carnation and Poinsettia stations. 

A generalization of (5.8.3) is given by Kundu (1976). If w = u + iv is the complex 
velocity, then the correlation between the rotating velocity vectors is given by the 
complex correlation coefficient 

p(X1, X2, T) = w~(t)w2(t + T) 
[W~ (t)Wl (t)l/2w~ (t)W2 (t) 1/21 (5.8.4) 

where subscripts denote locations 1 and 2, and the overbars denote the time or 
ensemble average. The correlation, p, which is independent of the choice of coordinate 
systems, is a complex quantity whose magnitude gives the overall measure of correl- 
ation and whose phase gives the average counterclockwise angle of the second vector 
with respect to the first. 

5.8.2 Cross-covariance method 
Following the Blackman-Tukey procedure for autospectral density estimation, the 
Fourier transform of the cross-covariance function, C12(7), can be used to find the 
cross-spectrum, S~2(f). Although the cross-covariance method is straightforward to 
apply, the sample cross-covariance function, C]2(T), suffers from the same dis- 
advantage as the sample autocovariance function, Cll (T), in that neighboring values 
tend to be highly correlated, thereby reducing the effective number of degrees of 
freedom. Moreover, the statistical significance falls off rapidly with increasing lag, T, 
SO that the number of lags, M, is much shorter than the record length (M << N). 
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Calculation of cross-spectra is best performed using the direct Fourier transform 
method. In fact, it is common practice these days to use the inverse Fourier transform 
of the cross-spectrum to get the cross-covariance function. 

5.8.3 F o u r i e r  t r a n s f o r m  m e t h o d  

As with autospectral analysis, estimates of cross-spectral density functions are most 
commonly derived using Fourier  transforms. The steps in calculating the cross- 
spectrum using standard Fourier transforms or FFTs  are as follows (see also Bendat 
and Piersol, 1986): 

(1) Ensure that the two time series Xl(t) and x2(t) span the same period of time, tn, 
where n - 0, 1, ..., N - 1, and T = N A t  is the length of each record. Remove the 
means and trends from each of the two time series. If block averaging is to be used 
to improve the statistical reliability of the spectral estimates, divide the available 
data for each pair of time series into m sequential blocks of N'  data values each, 
where N' = N / m  

(2) To reduce side-lobe leakage, taper the time series xl(t) and Xz(t) using a Hanning 
(raised-cosine) window, Kaiser-Bessel window, or other appropriate taper. Re- 
scale the spectra calculated in step 4 to account for the loss of "energy" during 
application of the window (see Table 5.6.4). 

(3) Compute the Fourier transforms, X1 (fk), X2OCk), k = 0, 1, 2, ..., N - 1, for the two 
time series Xl(t) and x2(t). For block-segmented data, calculate the Fourier 
transforms Xlm(fk) and X2m~k) for each of the m blocks, where 
k = 0, 1, ..., N ' -  1. To reduce the variance associated with the tapering in step 
2, the transforms can be computed for overlapping segments. 

(4) Adjust the scale factor of Xl(fk) and Xz(fk) [or Xlm(fk), X2,,,(fh)] for the reduction in 
spectral energy due to the tapering in step 2. For the Hanning window, multiply 
the amplitudes of the Fourier transforms by V/(8/3). 

(5) Compute the raw cross-spectral power density estimates for each pair of time 
series (or each pair of blocks) where for the two-sided spectral density estimate 

1 
Sl2(fk) - - "  -~tt[X~(fk)Xz(fk)], k - O, 1, 2, ..., N - 1 

(no block averaging) 

1 , 
Sl20Ck; m) -- N A t  [Xlm(fk)X2mOfk)]' k = 0 ,  1, 2, . . . ,  N ' -  1 (5.8.5a) 

(to be used for block averaging) 

and for the one-sided spectral density estimates 

2 
G120ck) = N A t  [X;~)X2(fk)], k - 0, 1, 2, ..., N/2  

(no block averaging) 

2 , 
G12(fk;m) = N A t  [Xlm(fk)X2m(fk)]' k = O, 1, 2, ..., N ' /2  (5.8.5b) 

(for block averaging) 
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(6) In the case of the block-segmented data, average the raw cross-spectral density 
estimates from the m blocks of data to obtain the smoothed periodogram for 
Sl2(fk) , the two-sided cross-spectrum, o r  G12Ofk), the one-sided cross-spectrum. 

Cross-covariance function" Since the cross-covariance function, C12(T) [= R12(7-), the 
cross-correlation function, if the mean is removed from the record], and the cross- 
spectrum are Fourier transform pairs, equation (5.8.5) can be used to obtain a smoothed 
or unsmoothed estimate of the cross-covariance function. To do this, we first calculate the 
Fourier transforms Xl(J) and X2(/) of the individual time series, and determine the 
product S 1 2 ( f ) -  (NAt)-I[x~(f)X2(f)]. We then take the inverse Fourier transform 
(IFT) of the cross-spectrum, S~2(/), to obtain the cross-covariance function 

OG 

C12(7")-- / Sl2(,f)e i27rf~ df (5.8.6) 
i t J  

- - O C  

If the spectrum is unsmoothed prior to the IFT (or IFFT if the number of spectral 
estimates is a power of 2), we obtain the raw cross-covariance function. If, on the other 
hand, the cross-spectrum is smoothed prior to (5.8.6) using one of the spectral 
windows, such as the Hanning window, the cross-covariance function also will be a 
smoothed function. 

We can use the acoustic backscatter data in Table 5.1(a) to illustrate the direct and 
indirect methods for calculating the cross-covariance function. In Table 5.8.1, we 
present the normalized, unsmoothed cross-covariance function, P 1 2 ( 7 " )  - -  

C12(T)/[CI1(0)C22(0)] 1/2, obtained directly from the definition (5.8.1). In this case, 
the lag ~- is in 5-m depth increments. The indirect approach is based on the Fourier 
estimates presented in Table 5.8.2. Here, we first give the Fourier transforms, X~(f) 
and X2(/), of the two profile series as a function of wavenumber, f (Table 5.8.2a). We 
next calculate the cross-spectrum, $12(f)-  (NAt)-I[X~(f)X2(f)], and then take the 
inverse transform of Slz(f) to obtain the cross-covariance function C12(T) as a function 
of lag (Table 5.8.2b). No smoothing was applied to either data set, and the results 
obtained from the i~nverse Fourier transform method are identical to those listed in 
Table 5.8.1, within roundoff error. The advantage of the transform approach is that it 
is straightforward to derive a smoothed cross-covariance function by windowing the 
cross-spectral estimate prior to Fourier inversion. 

5.8.4 Phase and cross-amplitude functions 

Suppose that the constituents of the bivariate time series {xl(t), x2(t)} have the same 
frequency, fo, but different amplitudes (A1, A2) and different phases (4~1, r 
respectively. In particular, let 

xk(t) = Ak cos (27rf0t + Ck), k - 1, 2 

The Fourier transform of Xk(t), over - T / 2  <_ t <_ T/2 is 

A~ <['ei,~ {sin [Tr(f -f0)T]} + e_ir ~ {sin [Tr(f +f0)T]} ~ 
X h ( f ) - - 2 -  [ 7r(f - fo)  ~(f +fo) J '  

Hence, the sample cross-spectra of the two series is 

(5.8.7) 

i =  1, 2 (5.8.8) 
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S12(f) - -~-[X 1 (f)X2 (f)] 

where X~' is the complex conjugate of X1. From this expression, we obtain 

S12 (f) -- 
A1A2 f -i~, sin [7r0C - fo)T]  sin [r~(f +fo)T] ' [  

4T I,e rr(f fo) +ei~' - 7r0C +fo) J 
• {elSe sin [rr(f - /o )T]  sin [Tr(f +/o)T] } 

rr0f - f o )  + e-ir rr(f +fo) 

where 

(5.8.9) 

(5.8.10) 

Table 5.8.1. Unsmoothed, normalized cross-covariance function, p12(7-) given by (5.8.2), as a function of 
lag r in increments of 5 m for bin 1 of beams 1 and 2 of the acoustic backscatter spatial series (profiles) 
listed in Table 5.1(a) 

Lag 7- (m) 0 5 10 15 20 25 30 35 
0.96 0.94 0.85 0.71 0.57 0.48 0.40 0.31 

Lag 7. (m) 40 45 50 55 60 65 70 75 
0.23 0.14 0.02 -0.19 -0.24 -0.37 -0.46 -0.48 

Table 5.8.2(a) Complex Fourier transforms of X~(fk) and X2(fk ) for the profiles of acoustic backscatter 
listed in Table 5.1(a). For each wavenumber, fh, the table lists the real part of the transform (top) 
followed by the imaginary part (bottom), where Xj(fk) = ReXj(fk) + ilmXj(fk), j - I, 2. The vertical 
wavenumber fk = kf', k = O, 1, ..., 16, where the fundamental vertical wavenumber, f '  = i /155 m 
- 0.00645 cpm (cycles per meter) 

FFT k = 0  1 2 3 4 5 6 
Xl(fh) 348.13 -289.32 71.17 15.52 55.16 97.59 -28.66 

0.00 214 .96  -16.35 -117.25 105 .57  -16.98 -21.37 
X2(fk) 339.02 -226.53 119.54 55.84 -5.24 59.55 -36.39 

0.00 227.88 38.22 -93.12 122 .33  -24.13 -6.57 

k = 8 9 10 11 12 13 14 15 
1.13 -6.16 41.11 24.03 -1.79 4.63 3.74 4.09 
6.87 21.29 -2.96 -36.43 -4.60 1.08 3.54 18.45 

11.90 5.68 23.89 13.85 3.96 7.37 11.27 2.34 
-5.35 -4.63 -5.13 -18.72 -1.67 -4.93 -4.47 9.00 

7 
5.07 
4.28 
4.22 

-19.09 

16 
27.13 
0.00 

27.79 
0.00 

Table 5.8.2(b) The inverse fast Fourier transform (IFFT) of the cross-spectrum SI2( J~ :  ) - -  
(NAt)-1[X~(fk)X2(fk)] using the values in Table 5.8.2(a). The values represent the raw (un- 
normalized) estimates of the cross-covariance function, C1~(7-), as a function of lag 7-(0 <_ r <_ 16) in 
increments of 5 m for bin 1 of beams 1 and 2 of the acoustic backscatter spatial series (profiles) listed in 
Table 5.1(a) 

7 . = 0  1 2 3 4 5 6 7 
C:2(7) 13483.7 12752.4 11151.5 9087.4 6992 .3  5436 .5  4589 .9  3411.7 

7 -=8  9 
2382.5 1393.8 

10 11 12 13 14 15 16 
160.6 -1103.6 -2096.0 -3103.5 -3610.5 -3623.8 -3222.1 
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S 12 (f)T+~ ---+ ala2~ [ e -i(r ) ~50c +f0)  -4- e i(r r )~5(f - fo)] (5 .8 .11) 

The phase difference, (~2 - qS1), in the above expressions determines the lead (or lag) 
of one cosine oscillation relative to the other for given frequency, f. The cross 
amplitude, A1A2, gives the geometric mean amplitude of the co-oscillation for 
frequency f. From equation (5.8.2), the sample cross-spectrum is 

S 1 2 ( f ) - A 1 0 f ) A 2 ( f )  [e i[q520c)-~'0r)]] (5 8 12) 
T " ' 

or 

S120 c) -- A12(f) [e i0~'2(f)] 

where the sample phase spectrum, ~12(f)= q52(f) -  qSl(f), is an odd function of fre- 
quency, and the sample cross-amplitude spectrum, A120 r) =Al(f)Ae(f)/T, is a 
positive even function off. 

5.8.5 Coincident and quadrature spectra 

An alternative description of this same information is to describe cross-spectra in 
terms of coincident (C) and quadrature (Q) spectra. In this case, we can write 

S12(f) -- C120 r) - i Q 1 2 ( f )  (5.8.14) 

where 

C12(f) = A120 c) cos [q512 (f)]; QlzO r) = -A12 ( f ) s in  [q)12 Q")] (5.8.15) 

and 

A~z(f) _ C~2(f) + Q2 1[ -Q120c)] (5.8.16) 12(f); 4~12(f)- tan- L Cl2(f) 

Here C12(/) is an even function of frequency and Qlz(f) is an odd function. (The co- 
spectral density function C~2(f) for frequency f is not to be confused with the 
covariance function C12(T) at time lag r. Where confusion may arise, we use the cross- 
correlation R12(7-) in place of C12(z).) If we consider the bivariate cosine example that 
we used in (5.8.7), we have 

A1A2 
C12(f) - 4 cos (~52 - ~l)[~5(f + fo)  + (5(f - f0 ) ]  

[ 'al  cosqSia2 cos~2 a l  sin qS1A2 sin 052"1 (5.8.17) 
= ~ 4 + 4 f [6(f +f0) + 6(f -fo)] 

The sample co-spectrum, C12(f), measures the covariance between the two cosine 
components and the two sine components. That is, the contributions to the cross- 
spectrum from those components of the two time series that are "in phase" (phase 
differences of 0 or 180~ The sample quadrature spectrum, Q]z(f), determines the 
contributions from those components of the time series that are coherent but "out of 
phase" (phase difference +90~ 
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5.8.5.1 Relationship of co- and quad-spectra to cross-covariance 

The inverse transform of the cross-spectrum gives the cross-covariance (cross-correlation) 

OC 

R12(T) -- / [C12(f) - iQ]2(f) le  i2~f~ df  
- - O G  

ClG (X] 

= / C120 c) cos (2~rf 'r)df+ / Q12(f)sin (27rf'r)df 

--(]X] - - 0 0  

0 0  

Since C1200 is an even function, R12(0) -- f C120 c) df. If we define 

T 

C12r - / Rt2(T ) cos (27rfr)dT 
-T 

T 

Q120 c) -- / R12(7- ) sin (27rfT)dr 
-T 

~2(5.8.18) 

(5.8.19) 

then 

Rit-2(T) -- �89 n t- RI2(-T)] (the even part) 

R~2('r) - �89 - Rl2(- ' r)]  (the odd part) 
(5.8.20) 

5.8.6 Coherence spectrum (coherency) 
The squared coherency, coherence-squared function, or coherence spectrum between two 
time series Xl(t) and Xz(t) is defined for frequencies fk, k - 0, 1, . . . ,  N - 1, as 

IGI2 (fk)l 2 
')'~2 (fk)--GllOfk)G22(fk) 

]Sl20fk)] 2 - (5.8.21) 
Sl l (fk )Szz (fk ) 

[C~2(fk) + Q~2(fk)] 
Sl l ffk )S22 (fk ) 

where Gll0Ck) is the one-sided spectrum (confined to fk >_ 0), Sll(fk) = IG11Ork) is the 
two-sided spectrum defined for all frequencies and G12(fk) is the one-sided cross- 
spectrum. Here 

0 < [')'~20Ck)l < 1 (5.8.22) 

and 

71e~) - lTf2(fk)l 1/2e-i4)'2f~ (5.8.23) 

where [")'220Vk)[ 1/2 is the modulus of the coherence function and C~120fk) the phase lag 
between the two signals at frequency fk (Figure 5.8.2). In the literature, both the 
squared coherency, 712,2 and its square root are termed "the coherence" so that there is 
often a confusion in meaning (Julian, 1975). To avoid any ambiguity, it is best to use 
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squared-coherency when conducting coherence analyses once the sign of the 
coherence function is determined. This has the added advantage that squared coher- 
ency represents the fraction of the variance in x] ascribable to x2 through a linear 
relationship between x] and x2. Two signals of frequency fk are considered highly 
coherent and in phase if 1722~)1 ~ 1 and 012(fk) ~ O, respectively (Figure 5.8.2). The 
addition of random noise to the functions x] and x2 of a linear system decreases the 
coherence-squared estimate and increases the noisiness of the phase associated with 
the system parameters. Estimation of 72 ]2(fk) is one of the most difficult problems in 
time-series analysis since it is so highly noise dependent. We also point out that phase 
estimates generally become unreliable where coherency amplitudes fall below the 90- 
95% confidence levels for a given frequency. 

The real part of the coherence function, '712(fk), lies between -1  and § 1 while the 
squared-coherency is between 0 and § 1. If the noise spectrum, S~c(fk), is equal to the 
output spectrum, then the coherence function is zero. This says that white noise is 
incoherent, as required. Also, when S~c(fk) -- 0, we h a v e  " ) / ~ 2 0 f k ) -  1; that is the 
coherence is perfect if there is no spectral noise in the input signal. It is important to 
note that, if no spectral smoothing is applied, we are assuming that we have no 
spectral noise. In this case, the coherency spectrum will be unity for all frequencies, 
which is clearly not physically realistic. Noise can be introduced to the system by 
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Figure 5.8.2. Coherence between current vector time series at sites Hook and Bell on the northeast coast 
of Australia (separation distance ~ 300 km). (a) Coherence squared; (B) phase lag. Solid line: Inner 
rotary coherence (rotary current components rotating in the same sense). Dashed line: Outer rotary 
coherence (rotary current components rotating in the opposite sense). The increase in inner phase with 
frequency indicates equatorward phase propagation. Positive phase means that Hook leads Bell. (From 

Middleton and Cunningham, 1984.) 
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smoothing over adjacent frequencies. We also can overcome this problem by a 
prewhitening step that introduces some acceptable noise into the spectra. 

5.8.6.1 Confidence levels 

The final step in any coherence analysis is to specify the confidence limits for the 
coherence-square estimates. If 1 - a  is the (1 - a ) 1 0 0 %  confidence interval we wish 
to specify for a particular coherence function, then, for all frequencies, the limiting 
value for the coherence-square (i.e. the level up to which coherence-square values can 
occur by chance) is given by 

7~_,, - 1 - ~ [1 / (EDOF-1) ]  

= 1 - 0~ [2/(DOF-2)] 
(5.8.24) 

where EDOF = DOF/2 (called the equivalent degrees of freedom) is the number of 
independent cross-spectral realizations in each frequency band (Thompson, 1979). 
The commonly used confidence intervals of 90, 95, and 99% correspond to a - 0.10, 
0.05, and 0.01, respectively. As an example, suppose that each of our coherence 
estimates is computed from an average over three adjacent cross-spectral Fourier 
components, then EDOF = 3 (DOF = 6). The 95% confidence level for the squared 
coherence would then be 7925- I -  (0.05) 0.5 - 0 . 7 8 .  Alternatively, if the cross- 
spectrum and spectra were first smoothed using a Hamming window spanning the 
entire width of the data series, the equivalent degrees of freedom are EDOF - 2.5164 
• 2 - 5.0328 (Table 5.6.4) and the 95% confidence interval 7925- 1 -  (0.05) 0.6595 
= 0.86. For EDOF = 2, 7~-~ = 1 - a  so that the confidence level is equal to itself. 

A useful reference for coherence significance levels is Thompson (1979). In this 
paper, the author tests the reliability of significance levels 7~_~, estimated from 
(5.8.24) with the coherence-square values obtained through the summations ]2 

(f)x k 0 c) 
k=l  

7 z ( f ) -  K K (5.8.25) 
~[~ ]Xlk (f)]2 ~[[] ]X2h 0 c) ]2 
k=l  k=l  

In this expression, Xlk and X2k a r e  the Fourier transforms of the respective random 
time series Xlk(t) and Xzk(t) generated by a Monte Carlo approach, and the asterisk 
denotes the complex conjugate. The upper limit K corresponds to the value of EDOF 
in (5.8.24a). Because ,),2 0r is generated using random data, it should reflect the level of 
squared coherency that can occur by chance. For each value of K, 7 2 (f) was calculated 
1000 times and the resultant values sorted as 90th, 95th, and 99th percentiles. The 
operation was repeated 10 times and the means and standard deviations calculated. 
This amounts to a total of 20,000 Fourier transforms for each K ( - E D O F ) .  There is 
excellent agreement between the significance level derived from (5.8.24) and the 
coherence-square values for a white-noise Monte Carlo process (Table 5.8.3), lending 
considerable credibility to the use of (5.8.24) for computing coherence significance 
levels. The comparisons in Table 5.8.3 are limited to the 90 and 95% confidence 
intervals for 4 <_ K _< 30. Thompson (1979) includes the 99% interval and a wider 
range of K (EDOF) values. 
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Confidence intervals for coherence amplitudes, as well as for coherence phase, 
admittance, and other signal properties (see next section), can be derived using the data 
itself (Bendat and Piersol, 1986). Let ~ be an estimator for 9~, a continuous, stationary 
random process, and define the standard error or random error of sample values as 

random error = a[~] - ( E [ ~  2] - E2[~] )  1/2 (5.8.26a) 

and the root mean square (RMS) error as 

RMS e r r o r -  ( E [ ( ~ -  9~)2]) 1/2 - (o'2[~] + B2[~])  1/2 (5.8.26b) 

where B is the bias term B[#] = El#] - 9~ and E[x] is the expected value of x. If we now 
divide each error term by the quantity 9~ being estimated, we obtain the normalized 
random error 

Er --  O'[~] ( g [ ~  2] - g 2 [ ~ ] )  1/2 
--  ( 5 . 8 . 2 7 a )  

9~ 9~ 

and the normalized RMS error 

(E[(9~ - 99)2]) 1/2 
C--- 

99 

(o'2 [991 + B2 [q~]) 1/2 
(5.8.27b) 

where it is assumed that 9~ # 0. Provided Cr is small, the relation 

~2 __ qD2(1 _4_ E'r) (5.8.28) 

yields 

- 99(1 �9 Cr) 1/2 ~ 9~(1 + Or~2) (5.8.29) 

so that 

Er[~ 2] ~ 2Cr[q~] (5 .8 .30)  

Fhus, for small Cr the normalized error for squared estimates #2 is roughly twice the 
normalized error for unsquared estimates. 

Table 5.8.3 Monte Carlo estimates, 7~(f), of the significant coherence-squared and prediction of this 
value using (5.8.24)for intervals c~ - 0.05 and 0.I0 for EDOF = 4, 5, 6, 8, 10, 20, and 30. (After 
Thompson, 1979) 

EDOF EDOF EDOF EDOF EDOF EDOF EDOF 
= 4 = 5 = 6 = 8 = 1 0  = 2 0  = 30 

o~ =0.10 
q2(f) 0.539 0.437 0.371 0.288 0.230 0.114 0.076 
,y2 0.536 0.438 0.369 0.280 0.226 0.114 0.076 0.90 

c~ =0.05 
,32(f) 0.629 0.531 0.452 0.354 0.288 0.144 0.099 

2 %.,a5 0.632 0.527 0.451 0.348 0.283 0.146 0.098 
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When the estimates 0 have a small bias error, BI~ ] ,~ 0, and a small normalized 
error, e.g. e _< 0.2, the probability density for the estimates can be approximated by a 
Gaussian distribution. The confidence intervals for the unknown true parameter 9~ 
based on a single estimate ~ are then 

~(1 - e) _< 9~ _< ~(1 + e) with 68% confidence (5.8.31a) 

9~(1 - 2e) _< 9~ <_ ~(1 + 2e) with 95% confidence (5.8.31b) 

~(1 - 3c) _< 9~ _< ~(1 + 3c) with 99% confidence (5.8.31c) 

5.8.7 Frequency response of a linear system 

We define the admittance (or transfer) function of a linear system as 

Sl2(fk) G12(fk) fk -- k / T  k - 1 ... N 
H l z ( f k )  - -  S l l ( f k )  ~ G l l ( f k )  ' ' ' ' 

-i012 (fk) --Ill12 ~k) [e 

(5.8.32) 

where S l l ( f k )  and Gll(fk) are, respectively, the two-sided and one-sided autospectrum 
estimates for the time series Xl(t) selected here as the input time series. The gain (or 
admittance amplitude) function H~k) behaves like a spectral regression coefficient at 
each frequency fk. Using the definition G12(fk) --  C l2 ( fk )  -- iQ120Ck), we obtain 

G12 (fk) 
IH12 0 f k ) I -  G l l  (fk) 

]C~20 oh) + Q~z(fk)[1/2 (5.8.33) 

Gl10ck) 

and where Ol2(fk) = tan-l[--Q12OCk)/Cl2(fk)] by (5.8.16). Figure 5.8.3 shows the complex 
admittance for the observed longshore component of oceanic wind velocity (time series 
1) and the longshore component of wind velocity derived from pressure-derived 
geostrophic winds (time series 2). The geostrophic winds closely approximate the 
amplitude and phase of the actual winds up to a frequency of about 0.05 cph (period = 
20 h) after which the two signals no longer resemble one another. It is also at this 
frequency that the coherence consistently begins to fall below the 90% confidence level. 

5.8.7.1 Multi-input systems cross-spectral analysis 

Many oceanographic time series are generated through the combined effects of several 
mutually coherent inputs. For example, low-frequency fluctuations in coastal sea level 
typically arise through the combined forcing of atmospheric pressure, along- and 
cross-shore wind stress, and surface buoyancy flux. Coherences between the forcing 
variables (e.g. pressure, longshore wind stress, and runoff) are generally quite high. 
Because of this, it would be physically incorrect to use ordinary cross-spectral analysis 
which simply examines the correlation functions, 2 7y:x, between the output, y(t), and 
each of the inputs, x(t), individually without taking into account the mutual 
correlation among all the inputs. If this is not done, the sum of the individual 
correlation functions can exceed unity. Provided that long-term sea-level fluctuations 
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Figure 5.8.3. Complex admittance for observed (series I) and calculated (series 2) longshore components 
of oceanic wind velocity. (a) Phase; (b) amplitude. Positive phase means that series 1 leads series 2. 

(From Thomson, 1983.) 

(the output time series) are linearly related to the individual forcing functions (the 
input time series), we can use multi-input systems cross-spectral analysis to calculate the 
relative contribution each of the input terms makes to the output. The effective 
correlation function for the total system will then be less than unity, as required. This 
concept was pioneered in oceanography by Cartwright (1968), Groves and Hannan 
(1968), and Wunsch (1972). All three studies were concerned with sea-level variations. 

The purpose of this section is to provide a brief overview of multiple systems 
analysis. For a thorough generalized presentation, the reader is directed to Bendat and 
Piersol (1986). Consider K constant-parameter linear systems associated with K 
stationary and ergodic input time series, Xk(t), k = 1, 2, ..., K, a noise function, e(t), 
and a single output, y(t), such that 

K 

y(t)  = E y k ( t )  + c(t) (5.8.34) 
k=l 

where theyk(t)  are the outputs generated by each of the measured inputs Xk(t). We can 
only measure the accumulated responsey(t), not the individual responses, yk(t). In the 
present context, y(t) represents the measured time series of coastal sea level, Xk(t) the 
corresponding weather variables, and e(t) the deviations from the ideal response due 
to instrument noise, remotely generated subinertial waves, and other physical proces- 
ses not correlated with the input functions. The Fourier transform of the outputy(t) is 

K 

Y (r) --- Z Yk + 
k=l 
K 

: Hk (f)x  (f) + eCf) 
k=l 

(5.8.35) 
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Yk(f)  k =  1 2 ... K ( 5 . 8 . 3 6 )  H h ( f )  - X h ( f ) '  ' ' ' 

is the admittance (or transfer) function relating the kth input with the kth output at 
frequency f. The frequency-domain spectral variables Xk(f) and Y(f) can be computed 
from the measured time series Xk(t) and y(t). Using these variables, we can then 
determine the functions Hk(f) and other properties of the system. 

Multiplication of both sides of (5.8.35) by Xfl(D, the complex conjugate of Xj(J), for 
any fixed j = 1, 2, ..., K, yields the power spectral relation 

K 
Sjy(f) - E Hk(f)SJ kOc) + sjcoc)' j = 1, 2, ..., K (5.8.37) 

k=l 

in which 

Sjy (f) = x ;  ( f ) Y e t ) ,  

sjk (f) - x ;  ( f )x~  Or), 

j -  1, 2, ..., K 
j, k - 1, 2, ..., K (5.8.38) 

Here, the overbar denotes the average value, the Sjy(f) are the cross-spectra between 
the K inputs and the single output, Sjk(f) are the cross-spectra (j 4 k) and spectra (j -- 
k) among the input variables, and SjE(f) is the cross-spectrum between the input 
variables and the noise function. If the noise function 6(t) is uncorrelated with each 
input xk (as is normally assumed), the cross-spectral terms Sj~(f) will be zero and 
(5.8.37) becomes 

K 
Sjy(f) = E Hk(f)Sjk(f), j = 1, 2, ..., K (5.8.39) 

k=l 

This expression is a set of K equations in K unknownsmthe Hk(f) for k = 1, 2, ..., K - -  
where all spectral terms can be computed from the measured records ofy(t) and xk(t). 
If the model is well defined, matrix techniques can be used to find the Hk(l). Bendat 
and Piersol (1986) also define the problem in terms of the multiple and partial coherence 
functions for the system. The multiple coherence function is given by 

_ = S ~ ( f )  ,~2 SvvO f) 1 (5.8.40) 
y:x Syyf f )  Syyf f )  

where Svv(f) is the multiple coherent output spectrum, Syy(f) is the output spectrum 
and S~(f) is the noise spectrum. As with any squared coherence function, 
0 < 17y2~] < 1 For any problem with multiple inputs, 72 takes the form of a matrix 

~ " y:x 
whose off-diagonal elements take into account the coherent interactions among the 
different input terms. Expressions (5.8.39) and (5.8.40) simplify even further if the 
inputs themselves are mutually uncorrelated. In that case 

Sjy( f )  2 
-- , , ..., ~'fySyy . 8 . 4 )  I-Isif) ~jj-~ j = 1 2, K; II- I j ( f )]2Sj j ( f )= (f) (5 1 

Hence, the contribution of the input variable, xj(t), to the output variable, y(t), occurs 
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only through the transfer (admittance) function/-/j(D of that particular input variable. 
No leakage ofxi(t) takes place through any of the other transfer functions since xj(t) is 
uncorrelated with xk(t) for k :/: j. 

In general, the outputy(t) is forced not only by the mutually coherent parts of the 
various inputs but also by the noncoherent portions of the inputs which go directly to 
the output through their own transfer functions without being affected by other 
transfer functions. This leads to the need for partial coherence functions. If part of one 
record causes part or all of a second record, then turning off the first record will 
eliminate the correlated parts from the second record and leave only that part of the 
second record that is not due to the first record. Because we do not want to incorporate 
the coherent portions of given forcing terms in the partial coherence functions, the 
partial coherences are found by first subtracting out the coherent parts of the various 
input signals. Bendat and Piersol (1986) state that, if any correlation between Xl(t) and 
x2(t) is due to Xl(/), then the optimum linear effects of Xl(t) to xe(t) should be found. 
Denoting this mutual effect as xz:l(t), this should be subtracted from x2(t) to yield the 
conditioned (or residual) record, xz:l(t) representing that part ofxz(t) not due to Xl(t). 

Multi-input systems cross-spectral analysis takes into account the fact that any 
input record xk(t) with nonzero correlations between other inputs will contribute to 
variations in the outputy(t) by passage through any of the K linear systems, Hk(f). The 
conditioned portion of xh(t) will contribute directly to the output through its own 
response function only. The problem is to determine what percentage contribution 
each input function makes to the total variance ofy(t) for a specified frequency band. 
The simplest case is a two-input system consisting of inputs Xl(t) and XE(t) for which 

Y(f) = H1 (f)X1 (f) -1- H2Oc)X2(f) + E(f) (5.8.42) 

and, provided ")'f2 ~ 0 

s 2(f)Szy(f)l Sly(f) 1-S22(f)Sly- ~ 
HI(f) = (5.8.43a) 

Sll Of)[1 - 7212 (f)] 

I S21(f)Sly(f)l 
S2y(f) 1 - Sll (f)S2y-~)) (5.8.43b) 

Hz0r) = $22(f) [1 - 7~2(f)] 

What is important to note here is the nonzero coupling between the different input 
variables when the cross-coherence, 7~2(f), is nonzero. The product HI(DSll(f) in 
(5.8.43a) still represents the ordinary coherent spectrum between the input Xl and the 
outputy. However, when 1")'12] r 0, xl(t) influences y(t) through the transfer function 
H2(f) as well as through its own transfer function HI(D. Similarly, xz(t) influences y (t) 
through the transfer function HI(J) as well as through its transfer function //2(/) 
(5.8.43b). In general, the sum of ~,~y (f) and 7~y (f) can be greater than unity when the 
outputs are correlated. The contributions from the conditioned records of x~(t) and 
x2(t) must also be taken into account when estimating the output response, y(t). Once 
this is done, it becomes possible to construct reliable forecasting models for y. 

Cartwright (1968) used the multiple input method to study tides and storm surges 
around east and north Britain. He expanded the tide height, ~, at each of the ports 
studied as a Taylor series of the atmospheric pressure, p, about the port location (x = 
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O,y = O) 

r t) = Poo(t) + XPlo(t) +YPol (t) § xZP2o(t) + 2xyp11(t) + yZPo2(t) + ... (5.8.44) 

in which the pressure gradient terms (Plo, Pol) = (Op/Ox, Op/Oy) are proportional to 
the geostrophic wind stress, the second derivatives (P2o, P02) = (02P/02x, 02p/OY 2) are 
related to wind stress gradients, and so on. As indicated by Table 5.8.4, the variances 
in different frequency bands for the sea level at Aberdeen, Scotland are significantly 
reduced relative to the original values as the pressure, first derivatives, and second 
derivatives are successively included. Consequently, all of the mutually correlated 
weather variables are considered relevant to the predictability of sea level. In a more 
recent study, Sokolova et al. (1992) used the multiple spectral analysis technique to 
study sea-level oscillations measured from July to September 1986 at different 
locations around the perimeter of the Sea of Japan. According to their analysis for 
both the multiple and partial coherences, 46-77% of the sea-level variance was 
coherent with atmospheric pressure and 5-37% was coherent with the wind stress. 

5.8.8 Rotary cross-spectral analysis 

As outlined in Section 5.6.4, the decomposition of a complex horizontal velocity 
vector, w(t) = u(t) + iv(t), into counter-rotating circularly polarized components can 
aid in the analysis and interpretation of oceanographic time series. (Here, u and v 
typically represent the eastward and northward components of the current or wind.) 
Many of the fundamentals of this approach can be found in Fofonoff (1969), Gonella 
(1972), Mooers (1973), Caiman (1978), and Hayashi (1979). In rotary spectral analysis, 
the different frequency components of the vector w(t) are represented in terms of 
clockwise and counterclockwise rotating vectors (Figure 5.6.12). The counterclockwise 
component is considered to be rotating with positive angular frequency (~ _> 0) and 
the clockwise component with negative angular frequency (~ _< 0). Depending on 
which of the two components has the largest magnitude, the vector rotates clockwise 
or counterclockwise with time, with the tip of the vector tracing out an ellipse. If, for a 
given frequency, both components are of equal magnitude, the ellipse flattens to a line 
and the motions are rectilinear (back and forth along a straight line). Two one-sided 
autospectra and two one-sided cross-spectra can be computed for the rotary compo- 
nents. Mooers (1973) formulated these as two two-sided rotary autospectra called, 
respectively, the inner and outer rotary autospectra, the terminology originating from 
the resemblance of the inner and outer rotary autocovariance functions derived from 
the autospectra to the inner (dot) and outer (cross) products in mathematics. (A note 

Table 5.8.4 Residual variances (cm 2) for different frequency bands for Aberdeen, Scotland sea-level 
oscillations. The predictive model explains increasingly more of the variance as additional weather 
variables are incorporated in the analysis. (Modified after Cartwright, 1968) 

0-0.5 cpd 0.5-0.8 cpd 1.1-1.8 cpd 2.1-2.8 cpd 

Variables included 
Original  variance 181 
Poo 88 
Poo, Plo, Pox 49 
Poo, Plo, Pol, .-. Po2 38 

16 9.6 4.1 
13 9.1 3.9 
9 7.1 3.6 
6 5.3 3.3 
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on terminology: Mooers (1973) uses A and C for counterclockwise (+) and clockwise 
components ( - )  while Gonella (1972) uses + / -  subscripts for these components of the 
form u+ and u_. In this text, we use + / -  superscripts where, for example, the ampli- 
tude of the two vector components is written as A + and A-.) 

To simplify the mathematics, we assume that u and v are continuous, stationary 
processes with zero means and Fourier integral representations. The velocity vector 
w(t) can then be written in terms of its Fourier transform 

w(t) = u(t) + iv(t) = Z Wl'ei~"t 
p 

= ~ {~pcos(wpt)+B~psin(copt)]  + i[d2p cos(%t)+B2p sin(wpt)]} (5.8.45) 
p 

in which the Fourier transform component, Wp, is a complex quantity, the A and B are 
constants, and cop is the frequency of the pth Fourier component. As outlined in 
Section 5.6.4, each Fourier component of frequency co =cop can be expressed as a 
combination of two circularly polarized components having counterclockwise (03 _> 0) 
and clockwise (03 _< 0) rotation. Each of two components has its own amplitude and 
phase, and the tip of the vector formed by the combination of the two oppositely 
rotating components traces out an ellipse over a period, T = 2r~/03. The semi-major 
axis of the ellipse has length LM = A + (co) + A-(03) and the semi-minor axis has length 
Lm--~+(03)-A-(03)].  The angle, 0, of the major axis measured counterclockwise 
from the eastward direction gives the ellipse orientation. 

If we specify A1(03) and B l (03) to be the amplitudes of the cosine and sine terms for 
the eastward (u) component in equation (5.8.45) and A2(03)and B2(03) to be the 
corresponding amplitudes for the northward (v) component, the amplitudes of the two 
counter-rotating vectors for a given frequency are 

A+ (03) _ 1{ [B2 (03) § A1 (03)] 2 
112 

+ [A2(~) - B1 (~)]2 } ' (5.8.46a) 

A-(03) -- 1{ [B2 (~) - a l  (~)]2 § [32(03) § B1 (03)]2 } 1/2 

and their phases are 

tan(0 +) = [A1 (03) -- B1(03)]/[A1 (03) + B2(03)] 

(5.8.46b) 

(5.8.47a) 

tan(0-) = [B1 (co)+A2(03)]/[B2(w)-A1(03)] (5.8.47b) 

The eccentricity of the ellipse is 

C(03) -- 2 [d + (03)a- (03) ] l /2 / ~ + (03) -+- a -  (w) ] (5.8.48) 

where the ellipse traces out an area rr[(A+) 2 -  (A-) 2] during one complete cycle of 
duration 2rr/03. The use of rotary components leads to two-sided spectra; i.e. defined 
for both negative and positive frequencies. If S+(03) and S-(03) are the rotary spectra 
for the two components, then A+(03) <x [S+(03)] 1/2 can be used to determine the ellipse 
eccentricity. The sense of rotation of the vector about the ellipse is given by the rotary 
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coefficient (see Section 5.6.4.2) 

r(w) = IS + (w) - S -  (w)]/[S + (w) + S-(co)] (5.8.49) 

where -1  < r < 1. Values for which r > 0 indicate counterclockwise rotation while 
values of r < 0 indicate clockwise rotation; r = 0 is rectilinear motion. 

If u, v are orthogonal Cartesian components of the velocity vector, w = (u, v), then 
the rotary spectra can be expressed as 

s _ > o 
- (5.8.50a) 

= �89 + Svv + 2Quv] 

= H-( o)12, _< 0 

= �89 + Svv - 2Quv] 
(5 .8 .50b)  

where Suu and Svv are the autospectra for the u and v components, and Q~v is the 
quadrature spectrum between the two components. The stability of the ellipse is given 
by 

#(w) [<(A-(w)A+(w)exp [i(O+ - 0-)]}[2 
= , ~___0 

((A_)2} ((A+)2) (5.8.51) 

IYI 

where 

r - �89 -S~v + i2S,v] (5.8.52) 

and the ellipse has a mean orientation 

= �89 - S~)] (5.8.53) 

where ~ is measured counterclockwise from east (the function ~ is not coordinate 
invariant). The brackets (-) denote an ensemble average or a band average in 
frequency space. The ellipse stability, #(co), resembles the magnitude of a correlation 
function and is a measure of the confidence one might place in the estimate of the 
ellipse orientation (Gonella, 1972). 

5.8.8.1 Rotary analysis for a pair of  time series 

Having summarized the rotary vector analysis for a single location, we now want to 
consider the coherence and cross-spectral properties for two time series measured 
simultaneously at two spatial locations. The object of the rotary spectral analysis is to 
determine the "similarity" between the two time series in terms of their circularly 
polarized rotary components. For two vector time series, the inner and outer rotary 
cross-spectra can be computed. As the spectra are complex, they have both amplitude 
and phase. Hence, coherence and phase spectra can be computed, just as with the 
cross-spectra of two scalar time series. Inner functions describe co-rotating compon- 
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ents and outer functions describe counter-rotating components. We could, of course, 
use standard Cartesian components for this task. Unfortunately, the Cartesian vectors 
and their derived relationships generally are dependent on the selected orientation of 
the coordinate system. The advantages of the rotary type of analysis are: (1) The 
coherence analysis is independent of the coordinate system (i.e. is coordinate 
invariant); and (2) the results encompass the coherence and phase of oppositely 
rotating, as well as like-rotating components, for motions that may be highly 
nonrectilinear. Because the counter-rotating components have circular symmetry, 
invariance under coordinate rotation follows for coherence. 

We consider two vector time series defined by the relations 

Wl(E) -- (Ul, 7-)1); W2(t)- (u2, V2) (5.8.54) 

where, as before, (u, v ) -  u + iv are complex quantities. If WI(a~)and W2(oJ) are 
components of the Fourier transforms of these time series, then the transforms can be 
expressed in the form 

A exp (-i0+),  co > 0 8 
W(co)= A - e x p ( - i 0 - ) ,  co<_0 (5 . .  55) 

with the same definitions for amplitudes and phases as in the previous subsection. 
These expressions equate the negative frequency components from the Fourier 
transform with the clockwise rotary components and the positive frequency comp- 
onents from the transform with the counterclockwise components. 

Inner-cross spectrum: The inner cross-spectrum, Swjwk(co), provides an estimate of the 
joint energy content of two time series for rotary components rotating in the same 
direction (e.g. the clockwise component of series 1 with the clockwise component of 
series 2; Figure 5.8.4). For all frequencies, --con < co < ~on 

Swjwk(co) - (Wj*(co)Wh(co)), j , k - 1 ,  2 

_ { ~If (~o)A~-(co) exp I - i ( 0 / -  0~-)], a~ >_ 0 

- ~If (co)A~-(~o) exp [i(0f - 0k-)], co _< 0 

(5.8.56) 

where, as before, (.) denotes an ensemble average or a band average in frequency 
space, and the asterisk denotes the complex conjugate. It follows that the inner- 
autospectrum for each time series is 

_ j, [4 >_ 0 
Swjwi [Af (co)]2', co _< 0 (5.8.57) 

Thus, Sw, w,(co) (j - 1 ,  2) is the power spectrum of the counterclockwise component of 
the series j for co >_ 0, and the power spectrum for the clockwise component for co <_ 0. 
The area under the curve of Swjw~ (co) versus frequency equals the sum of the variance 
of the eastward (u) and northward (v) components. For co > 0, Sw,w2 (co) is the cross- 
spectrum for the counterclockwise component of series 1 and 2, while for 
co <_ O, Sw,w2(co) represents the cross-spectrum for the clockwise rotary component. 

Inner-coherence squared: The two-sided inner-coherence squared, 7~2 (co), between the 
two time series at frequency co is defined in the usual manner. Specifically, using the 
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previous definitions for the rotary components, we find 

O+2~ _ 7~2(~o ) _ { (A-{A-~cos(O-[  - -O~))  2 -1- (A~A]sin(O-~ - -O~-) )2}/ (A~ -2) "*2 /, a3 > 0 

{(A~A[ cos(O i- - 0 2 ) )  2 + (A{A 2 sin(O 1 -02))2} / (A~2)(A22) ,  w < 0 

(5.8.58) 

where 0 _< 1~22{ ~ 1. A coherence of near zero indicates a negligible relationship 
between the two like-rotating series while a coherence near unity indicates a high 
degree of variability between the series. The inner-phase lag, r between the two 
vectors is 

q~12(&) = t an  - l [ - Im(Sw~w2) /Re (Sw,w2) ]  (5.8.59) 

or, in terms of the clockwise and counterclockwise components 

{IA -{A-~ sin (0~- - O-~))/(A-(A-~ cos (0~- - 0~-)) 
tan(qS12) 

(-A-{A 2 sin (0 i- - O~))/(AIA 2 cos (0 i- - 02j/,~'\ 
~ > 0  
co< 0 (5.8.60) 

The phase, which is the same for both the inner cross-spectrum and the inner 
coherence, is a measure of the phase lead of the rotary component of time series 1 with 
respect to that of time series 2. Figure 5.8.4(a) shows the inner rotary coherence and 
phase for five years of monthly winter (November through February) wind data 
measured off Alaska at Middleton Island (59.4~ 146.3~ and Environmental 
Weather Buoy EB03 (56.0~ 148.0~ Co-rotating wind vectors were generally 

(a) Inner (b) Outer 
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Figure 5.8.4. Rotary coherence and phase for five-year time series of monthly mean winter (November 
through February) wind velocity from two sites off Alaska. (a) Co-rotating (inner) coherence and phase 
with 90% confidence level; Co) counter-rotating (outer) coherence and phase. (From Livingstone and 

Royer, 1980.) 
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coherent above the 90% confidence level for frequencies -1  < f < 1 cpd, with greater 
coherence at positive frequencies (Livingstone and Royer, 1980). The inner phase was 
nearly a straight line in the frequency range -1  < f < 0 cpd, increasing by 120 ~ over 
this range. 

Outer-cross spectrum" The outer cross-spectrum, Ywjwh (w), provides an estimate of the 
joint energy content between rotary components rotating in opposite directions (e.g. 
between the clockwise component  of time series 1 and the counterclockwise comp- 
onent of time series 2). For frequencies in the Nyquist frequency range,--coN < co < coN 

Ywjwk(co) - (Wj(-co)Wk(co)), j, k -  1, 2 

_ IAf(co)A-~(w)exp[i(g~ -Of ) ] ,  co _> 0 (5.8.61) 

/ A + (co)A-~ (co) exp [i(O + - O~-)], co _< 0 

(Middleton, 1982). These relations resemble those for the inner-cross spectra but 
involve a combination of oppositely rotating vector amplitudes and phases. For the 
case of a single series, j, the outer rotary autospectrum is then 

Ywjwj(co) - A f  (co)A + (co) exp [i(0] - 0f)], co > 0 (5.8.62) 

and is symmetric about c o -  0, and so is defined for only co >_ 0. Hence, Yw, wj (ca) is an 
even function of frequency; i.e. Ywjwj (co) - Ywjw, (-co). As noted by Mooers, Yw~wj (co) is 
not a power spectrum in the ordinary physical sense because it is complex valued. 
Rather it is related to the spectrum of the uv-Reynolds stress. 

Outer-coherence squared: After first performing the ensemble or band averages in the 
brackets (.), the outer-rotary coherence squared between series j and k is expressed in 
terms of the Fourier coefficients as 

k ) ( A 7 2  ) (AfA-~)2[(cos(O-~- Of))2 + (sin (0~-- {9;))2]]/(a+2 , 
A~k(co) -- (AfAr)2[(  cos (Off - ~gk)) 2 --k (sin (O + - 6~-)) /(A/2)(A-~2), 

w > O  

~o<o}  

(5.8.63) 

The phase lag, ~bjk(co) between the two oppositely rotating components of the two time 
series is then the same for the coherence and the cross-spectrum and is given by 

{(AfA -~ sin (Of - g~))/(AfA-~ cos (Oi - O~-)), co _> 0 
tan(~,2) - (A+A; sin (eft - ~f))/(A]A-~ cos (Ok- - ~+)), co < 0 

(5.8.64) 

If the values of 

A f  A-~ and A+A; 

change little over the averaging interval covered by the angular brackets, then 

~bjk(co) -- { Of - O-~, co>_O (5.8.65) 
e;  - 

Figure 5.8.4(b) shows the outer rotary coherence and phase for five-year records of 
winter winds off Alaska. Counter-rotating vectors were coherent at negative fre- 
quencies in the range - 1  < f < 0 cpd and exhibited little coherence at positive 
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frequencies. In this portion of the frequency band, the linear phase gradient was 
similar to that for the co-rotating vectors (Figure 5.8.4a). 

Complex admittance function: If we think of the wind vector at location 1 as the source 
(or input) function and the current at location 2 as the response (or output) function, 
we can compute the complex inner admittance, Z12, between two co-rotating vectors as 

Z 1 2 ( c 0 )  = Swlw2(~)lgwiw, ( ~ ) ,  --(a3N <( ~ <( ~ N  (5.8.66) 

The amplitude and phase of this function are 

[ Z 1 2 ( ~ ) l  - -  ISwiw2 (~3)[/Swiwi (~) (5.8.67a) 

~12 (~) = tan -1 {Im[Sw,w2 (~)]/Re[Swlw: (w)]} (5.8.67b) 

For frequency ,J, the absolute value of Zl2(~) determines the amplitude of the clock- 
wise (counterclockwise) rotating response one can expect at location 2 to a given 
clockwise (counterclockwise) rotating input at location I. The phase, ~'12(~), 
determines the lag of the response vector to the input vector. 

The corresponding expressions for the complex outer admittance, Z~2, between two 
opposite-rotating vectors are 

Z I 2 ( ~ J )  ~ -  Y w  l w 2 ( (.a.fl ) / g W  l W l ((.Aft), -(.aft N < o.y < (~ N (5.8.68) 

with amplitude and phase 

IZ12(~)l = IYw,w2 (ov)llgw,w, (~) (5.8.69a) 

(~)12 (C0) - -  tan-a {Im[Yw,w2(W)]/Re[Yw,w2 (w)]} (5.8.69b) 

For frequency ~, the absolute value of Z12(~3) yields the amplitude of the clockwise 
(counterclockwise) rotating response one can expect at location 2 to a given counter- 
clockwise (clockwise) rotating input at location 1. The phase, ~12(,~), determines the 
lag of the response vector to the input vector. 

5.9 W A V E L E T  A N A L Y S I S  

The terms "wavelet transform" and "wavelet analysis" are two recent additions to the 
lexicon of time-series analysis. First introduced in the 1980s for processing seismic 
data (cf. Goupillaud et al., 1984), the technique has begun to attract attention in 
meteorology and oceanography where it has been applied to time-series measurements 
of turbulence (Farge, 1992; Shen and Mei, 1993), surface gravity waves (Shen et al., 
1994), low-level cold fronts (Gamage and Blumen, 1993), and equatorial Yanai waves 
(Meyers et al., 1993). 

As frequently noted in the literature, Fourier analysis does a poor job of dealing 
with signals of the form 4~(t) = A(7-)cos (~ot), where the amplitude, A, varies on the 
slow time scale, 7-. Wavelet analysis has a number of advantages over Fourier analysis 
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that are particularly attractive. Unlike the Fourier transform, which generates record- 
averaged values of amplitude and phase for each frequency component or harmonic, 
co, the wavelet transform yields a localized, "instantaneous" estimate for the amplitude 
and phase of each spectral component in the data set. This gives wavelet analysis an 
advantage in the analysis of nonstationary data series in which the amplitudes and 
phases of the harmonic constituents may be changing rapidly in time or space. Where 
a Fourier transform of the nonstationary time series would smear-out any detailed 
information on the changing processes, the wavelet analysis attempts to track the 
evolution of the signal characteristics through the data set. As with other transform 
techniques, problems can develop at the ends of the time series, and steps must be 
taken to mitigate these effects. Similar to other transform techniques involving finite 
length data, steps also must be taken to minimize the distortion of the transformed 
data caused by the nonperiodic behavior at the ends of the time series. Lastly, we note 
that increasing the temporal resolution, At, of the wavelet analysis decreases the 
frequency resolution, Af, and vice versa, such that A t A f  < �88 reminiscent of the 
Heisenberg uncertainty relation. The more accurately we want to resolve the frequen- 
cy components of a time series, the less accurately we can resolve the changes in these 
frequency components with time. 

5.9.1 The wavelet transform 

Wavelet analysis involves the convolution of a real time-series, x(t), with a set of 
functions ga~(t)= g(t: z, a) that are derived from a "mother wavelet" or analyzing 
wavelet, g(t), which is generally complex. In particular 

- 1-~g[a-l(t--T)] (5.9.1) ga (t) V/a 

where r (real) is the translation parameter corresponding to the central point of the 
wavelet in the time series and a (real and positive) is the scale dilation parameter 
corresponding to the width of the wavelet. For the Gaussian-shaped Morlet wavelet 
(Figure 5.9.1) described in detail later in this section, the dilation parameter can be 
related to a corresponding Fourier frequency (or wavenumber). 

The continuous wavelet transform, X(t), of the time series with respect to the 
analyzing wavelet, g(t), is defined through the convolution integral 

OO 

1 /g*[a- 
al - T a  

m O C  

l(t - T)]X(t) dt (5.9.2) 

in which g* denotes the complex conjugate of g and variables 7, a are allowed to vary 
continuously through the domain (-oo,  oo). Wavelet analysis provides a two- 
dimensional unraveling of a one-dimensional time series into position, 7, and amplitude 
scale, a, as new independent variables. The wavelet transformation (5.9.2) is a sort of 
mathematical microscope, with magnification 1/a, position z, and optics given by the 
choice of the specific wavelet, g(t) (Shen et al., 1994). Whereas Fourier analysis provides 
an average amplitude over the entire time series, wavelet analysis yields a measure of the 
localized amplitudes a as the wavelet moves through the time series with increasing 
values of T. Although wavelets have a definite scale, they typically do not bear any 
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resemblance to the sines and cosines of Fourier modes. Nevertheless, a correspondence 
between wavelength and scale a can sometimes be achieved. 

To qualify for mother wavelet status, the function g(t) must satisfy several 
properties (Meyers et al., 1993): 

(1) Its amplitude [g(t)] must decay rapidly to zero in the limit It I -+ ec. It is this 
feature that produces the localized aspect of wavelet analysis since the 
transformed values, Xg[r, a] are generated only by the signal in the cone of 
influence about t =  r. In most instances, the wavelet g[( t -  r)/a] is assumed to 
have an insignificant effect at some time ] t f -  re. 

(2) g(t) must have zero mean. Known as the admissibility condition, this ensures the 
invertability of the wavelet transform. The original signal can then be obtained 
from the wavelet coefficients th rough the  inverse transform 

OC OC 

1 / / {Xg[r.,a]a_2ga,_}drda x(t) - -~ 
- -  C X )  - -  O C  

where 
CKP, �84 

C -1- / (co-1]G(co)[2)dco (5.9.4) 
--(2<7) 

in which G(co) is the Fourier transform ofg(t). For 1/C to remain finite, G(0) - 0. 
(3) Wavelets are often regular functions, such that G(co < 0 ) =  0. These are also 

called progressive wavelets. Elimination of negative frequencies means that 
wavelets need only be described in terms of positive frequencies. 

(4) Higher-order moments (such as variance and skewness) should vanish allowing 
the investigation of higher-order variations in the data. This requirement can be 
relaxed, depending on the application. 

One of most extensively used wavelets is the standard (admissible and progressive) 
Morlet wavelet 

g(t) - e-t2/2e +ict (5.9.5) 

consisting of a plane wave of frequency c = co (or wavenumber c = k in the spatial 
domain) which is modulated by a Gaussian envelope of unit width. Another possible 
wavelet which is applicable to a signal with two frequencies Cl and c2 is 

-t2/2eiC teiC2t g(t) - e ' (5.9.6) 

while the wavelet 

g(t) - e-t2/2eiCte ikt2/2 (5.9.7) 

is applicable to short data segments with linearly increasing frequency ("chirps"). 

5.9.2 Wavelet algorithms 
The choice of g(t) is dictated by the analytical requirements. More specifically, the 
wavelet should have the same pattern or signal characteristic as the pattern being 
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sought in the time series. Large values of the transform Xg(r, a) will then indicate 
where the time series x(t) has the desired form. The simplest--and most time- 
consuming--method for obtaining the wavelet transform is to compute the transform 
at arbitrary points in parameter (7-, a) space using the discrete form of equation (5.9.2) 
for known values ofx(t) and g(t). If one integrates from 0 < a _< M and 0 < 7- _< N, the 
integration time goes as M N  2. An alternate method is to use the convolution theorem 
and then obtain the wavelet transform in spectral space 

OC 

1 / eiT~G, (aw)X(w) d~ (5.9.8) 

where G(~) and X(,~) are the Fourier transforms of g(t) and x(t), respectively. Since 
FFT transforms can now be exploited, the analysis time drops to MNlog2N. To use this 
method, G(~) should be known analytically and the data must be preprocessed to avoid 
errors from the FFT algorithms. For example, if x(t) is aperiodic, the discrete form of 
(5.9.7) will generate an artificial periodicity in the wavelet transform that greatly 
distorts the results for the end regions. Methods have been devised to work around this 
problem. Aliasing and bias in FFT routines must also be taken into account. 

Meyers et al. (1993) used the standard Morlet wavelet (5.9.5), for which 
g(t) = e-t2/2e ict, to examine a signal that changes frequency halfway through the 
measurement. Here, we have followed tradition and used c for frequency ~. After con- 
siderable attempts (including use of raw data, cosine weighted data and other varia- 
tions), the authors decided that the best approach was to taper or buffer the original 
time series with added data points that attenuate smoothly to zero past the ends of the 
time series. "The region of the transform corresponding to these points is then discard- 
ed after the transform. Without this buffering, a signal whose properties are different 
near its ends will result in a wavelet transform that has been forced to periodicity at all 
scales through a distortion (in some cases severe) of the end regions. The greater the 
aperiodicity of the signal, the greater the distortion." 

For the Morlet wavelet, the dilation parameter a giving the maximum correlation 
between the wavelet and a plane Fourier component of frequency ~o (i.e. a wave of the 
form e i''~ is 

[c + (2 + c2) 1/2] 
ao = To (5.9.10) 

47r 

where To--27r/wo is the Fourier period. (In wavenumber space, To is replaced by 
wavelength Ao and Wo by ko.) We note that any linear superposition of periodic comp- 
onents results in separate local maxima. Consequently, the wavelet transform of any 
function x(t) - ~ A j e  ikit will have modulus maxima at aj - [ c  + (2 + c2)1/2]/(2kj). 

5.9.3 Oceanographic examples 
In this section, we will consider two oceanographic wavelet examples (surface gravity 
wave heights and zonal velocity from a satellite-tracked drifter) using the standard 
Morlet wavelet 

1 e_�89 sin [c(t - ,)/a] g(t) ~ g [ ( t -  7-)/a] - - ~  (5.9.11) 

In this real expression, the Gaussian function determines the envelope of the wavelet 
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while the sine function determines the wavelengths that will be preferentially 
weighted by the wavelet. The wavelet function progresses through the time series with 
increasing ~-, its cone of influence centered at times t = 7-. As a increases, the width of 
the Gaussian spreads in time from its center value (Figure 5.9.1a-c). Increasing c 
increases the number of oscillations over the span of the function. The processing 
procedure is as follows: (1) read in the time series x(n) (n = O, . . . ,  N - 1) to be 
analyzed, where N = 2 m (rn is an integer). To reduce ringing, extend each end of the 
time series by adding a trigonometric taper, tap = 1 - sin ~, where tap = 1.0 at the 
end values x(0) and x ( N -  1). The total length of the buffered time series must remain 
a power of two; (2) remove the mean of the new record and then take the FFT of the 
time series to obtain X(~); (3) take the Fourier transform of the wavelet g(t) at given 
length scales, a, to obtain G(a~); (4) calculate the integral (5.9.8) by convolving the 
product G* (a~)X(~)  in Fourier space; (5) take the inverse FFT of the result to obtain 
v/aXg[T, a] as a function of time dilation T and amplitude, a. 

In Figure 5.9.2(a) we have plotted a 300 s record of surface gravity wave heights 
measured off the west coast of Vancouver Island in the winter of 1993. Maximum wave 
amplitudes of around 3 m occurred mid-way through the time series. The Morlet 
wavelet transform of the record yields an estimate of the wave amplitude (Figure 
5.9.2b) and phase (Figure 5.9.2c) as functions of the wave period (T) and time (t). Also 
plotted is the value of the wave period (T - scale a) at peak energy (Figure 5.9.2d). 
Comparison of Figures 5.9.2(b) and 5.9.2(d) reveals that the larger peaks near times of 
75, 150, and 210 s all have about the same wavelet scale, a, corresponding to a peak 
wave period of around 8 s. Also, as one would expect, the 27r changes in phase between 
crests (Figure 5.9.2c) increases with increasing wave period (scale, a). 

In our second example, we have applied a standard Morlet wavelet transform to a 
90-day segment of 3-hourly sampled east-west (u) current velocity (Figure 5.9.3a) 
obtained from a satellite-tracked drifter launched in the northeast Pacific in August 
1990 as part of the World Ocean Circulation Experiment (WOCE). The drifter was 
drogued at 15-m depth and its motion indicative of currents in the surface Ekman 
layer. The 90-day velocity record has been generated from positional data using a 
cubic spline interpolation algorithm. We focus our attention on the high-frequency 
end of the spectrum, 0 < a < 1.5 days. As indicated by Figures 5.9.3(b) and (c), the 
first 30 days of the record, from Julian day (JD) 240 to 270, were dominated by weak 
semidiurnal tidal currents with periods of 0.5 days. Beginning on JD 270, strong wind- 
generated inertial motions with periods around 16 h (jr ~ 1.5 cpd) dominated the 
spectrum. These energetic motions persisted through the record, except for a short 
hiatus near JD 295. A blow-up of the segment from JD 240 to 270 shows a rapid 
change in signal phase associated with the shift from semidiurnal tidal currents to 
near-inertial motions. The contribution from the beat frequency between the M2 tidal 
signal and the inertial oscillations, fM2 = 0.0805 + 0.0621 cph - 0.1426 cph can also 
be seen in the transformed data at period T ~ 0.29 days. Examination of the longer 
period motions (2 < a < 30 days) suggests the presence of a long-period modulation of 
the high-frequency motions associated with the near-inertial wave events. 

5.9.4 The S-transformation 

Wavelet transforms are not the only method for dealing with nonstationary oscil- 
lations with time-varying amplitudes and phases. The S-transformation (Stockwell et 
al., 1994) is an extension of the wavelet transform that has been used by Chu (1994) to 
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Figure 5.9.2. Morlet wavelet transform of surface gravity waves measured from a waverider buoy 
moored off the west coast of Vancouver Island. (a) Original five-minute time series of significant wave 
height for the winter of 1993. (b) Wave amplitude (m) and (c) phase (deg.) as a functions of time; (d) the 

value of a (wave period) at peak wave amplitude. (Courtesy, D. Masson.) 

examine the localized spectrum of sea level in the TOGA data sets. For this particular 
transform, the relationship between the S-transform, S(co, r), and the data, x(t), is 
given by 

o o  

S(co, 7") = / H(co + c~)e-(2~2a2/W2)ei2uardc~ 

- -  O C  

(5.9.12) 

where 

OC OCo 

- -  O C  - - 0 0  

(5.9.13) 

~X3 

H(co + o~) = / x(t)e -i2'~(~~ dt (5.9.14a) 

- - O C  

OC 

= / S ( w +  ~, r ) d r  (5.9.14b) 
- -0 (3  
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Figure 5. 9.3. The Morlet wavelet transform of a 90-day record of the east-west velocity component from 
the trajectory of a satellite-tracked drifter in the northeast Pacific, September 1990. (a) Original 3- 
hourly time series; (b) amplitude (cm/s) versus time as a function of period, T, in the range 0 < T < 2.0 

days; (c) period (days) of the current oscillations at peak amplitude. (Courtesy, J. Eert.) 

is the standard Fourier transform of the input time series data. As indicated by 
(5.9.14b), the Fourier transform is the time average of the S-transform, such that 
[H(w)l 2 provides a record-averaged value of the localized spectra IS(~)] 2 derived from 
the S-transform. Equation (5.9.13) can also be viewed as the decomposition of a time 
series x(t) into sinusoidal oscillations which have time-varying amplitudes S(w, 7-). 

The discrete version of the S-transformation can be obtained as follows. As usual, let 
x ( t n ) - - x ( n A t ) , n - - O ,  1 , . . . , N - 1  be a discrete time series of total duration 
T -  N A t .  The discrete version of (5.9.12) is then 

1 ~ x(m/T), S(O, Tq) -Nm=0 p - 0  (5.9.15a) 

N-I  
S(wp, "rq) - E {H[(m +p)/T]e-(2~em2/p2)ei2mq/N}, p :/: 0 (5.9.15b) 

m = 0  

where S(0, 7.q) is the mean value for the time series, u p - p / N A t  is the discrete 
frequency of the signal, and 7.q - qAt  is the time lag. The discrete Fourier transform is 
given by 

I N - 1  
H ( p / T )  - ~ E x(k/T)e-i2~pk/N (5.9.16) 

k=0 
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The S-transform is a complex function of frequency wp and time rq, with amplitude 
and phase defined by 

A ( o3p , Tq ) - ]S ( &p , "rq ) ] ( 5 . 9 . 1 7 a )  

�9 (wp, r q ) -  tan- '  {Im[S(wp, rq)]/Re[S(%, rq)]} (5.9.17b) 

For a sinusoidal function of the form 

X(wp, r) = A(wp, r)cos [27rwpr + ~(wp, r)] (5.9.18) 

the function X at frequency cop is called the "voice". 
Chu (1994) applied the S-transform to the nondimensionalized sea-level records, 

x(t), collected at Nauru (0~ 166~ in the western equatorial Pacific and La 
Libertad (2~ 80~ in the eastern equatorial Pacific. Here 

x(t) = [r/(t)_- ~] (5.9.19) 
77 

and #(t) represents the mean value of the sea level, rl(t). A Fourier spectral analysis of 
the time series revealed a strong annual sea-level oscillation in the western Pacific and 
a weak annual oscillation in the eastern Pacific. Both stations had strong quasi- 
biennial oscillations with periods of 24-30 months. The S-transformation was then 
used to examine the temporal variability in these components throughout the 16 and 
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18-year time series. For example, the voices for the annual oscillation (Wl6 = 16/T; 
T = 192 months) were similar at the two locations with higher amplitudes in the late 
1970s than in the late 1980s (Figure 5.9.5). At La Libertad, the annual cycle became 
weak after 1979. The temporally varying quasi-biennial oscillations (w8 = 8/T) were 
out-of-phase between the western and eastern Pacific (Figure 5.9.6). 

5.9.5 The multiple filter technique 

The multiple filter technique is a form of signal demodulation that uses a set of narrow- 
band digital filters (windows) to examine variations in the amplitude and phase of 
dispersive signals as functions of time, t, and frequency, w (or J). Originally designed to 
resolve complex transient seismic signals composed of several dominant frequencies 
(Dziewonski et al., 1969), the technique has recently been modified for the analysis of 
clockwise and counterclockwise rotary velocity components (Thomson et al., 1997) and 
in investigations of tsunami wave dispersion (Gonzalez and Kulikov, 1993). 

The multiple filter technique relies on a series of band-pass filters centered on a 
range of narrow frequency bands to calculate the instantaneous signal amplitude or 
phase. Dziewonski et al. (1969) filter in the frequency domain rather than the time 
domain, although the results are equivalent to within small processing errors. The 
filtering algorithm generates a matrix (grid) of amplitudes or phases with columns 
representing time and rows representing frequency (or period). The gridded values 
can then be contoured to give a three-dimensional plot of the demodulated signal 
amplitude (or phase) as a function of time and frequency. Gonzalez and Kulikov 
(1993) used the technique to examine the evolution of tsunami waves generated by an 
undersea earthquake in the Gulf of Alaska on 6 March 1987 (Figure 5.9.7). Sea-level 
heights measured by two bottom-pressure recorders deployed in the deep ocean to the 
south of Kodiak Island show that the tsunami waves were highly dispersive (low 
frequencies propagated faster than high frequencies) and that the arrival times of the 
waves closely followed the theoretical predictions for shallow-water wave motions. 
Peak spectral amplitudes were centered around a period of roughly 5 min and the 
signal duration was about 40 min. 

5. 9.5.1 Theoretical considerations 

Since the technique is used to examine signal energy as a function of time and 
frequency, it is desirable that the filtering function has good resolution in the 
immediate vicinity of each center frequency and time value of the f - t  diagram. The 
Gaussian function was chosen to meet these requirements since the frequency-time 
resolution is greater for this function than any other type of nonband-limited func- 
tion. A system of Gaussian filters with constant relative response leads to a constant 
resolution on a log(w) scale. If wn = 27rfn denotes the center frequency of the nth row, 
the Gaussian window function can be written 

Hn(w) - exp {-&[(w - w~)/w~] 2 } (5.9.20) 

The Fourier transform of Hn, which bears a close resemblance to the Morlet wavelet 
(5.9.11), is 
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Figure 5. 9.5. The "voices" for the annual oscillation (co16 -- 1 6 /  T ;  T = 192 months) for (a) Nauru; 
and (b) La Libertad. Higher amplitudes were recorded in the late 1970s than in the late 1980s. (Chu, 

1994.) 

/7F 
hn (t) = -~--~con exp [--(co~t2/4ct)] cos (cont) (5.9.21) 

The resolution is controlled by the parameter,  o~. The value of a that we choose 
depends on the dispersion characteristics in the original signal and, as the user of this 
method will soon discover, improved resolution in time means reduced resolution in 
frequency, and vice versa. We also need to truncate the filtering process. Dziewonski 
et al. (1969) used a filter cut-off where the filter ampli tude was down 30 dB from the 
max imum.  

If we let BAND be the relative bandwidth,  then the respective lower and upper  
l imits of the symmetrical  filter, denoted coL, n and coU, n, are 

COL,,, = (1 -- BAND)con (5.9.22a) 

wu, n = (1 + BAND)w, (5.9.22b) 
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(a) (b) 

0.4 0.4 

0.3 0.3 

~ 0 . 2  0.2 

~- o.I 0.1 

, L | , ,  , . |  _ ~ .~ . L . .  

0 10 20 30 40 50 0 
Time (min) 

~ 

t 

' - i 0  " 20 3'0 4'0 ' 50 

Time (rain) 

Figure 5.9. 7. Multiple filter technique applied to sea-level heights measured in 5 km of water near 53~ 
156~ the Gulf of Alaska on 6 March 1988. Amplitude contours in the f - t  diagram are normalized by 
the maximum value and drawn with a step of 1 dB. Solid curve denotes the theoretical arrival time for 

these highly dispersive waves. (From Gonzalez and Kulikov, 1993.) 

In their analysis of seismic waves, Dziewonski et al. (1969) used BAND = 0.25, 
/3 = 3.15, and ~ = 3 /BAND 2 = 50.3. 

T h e f - t  diagram for the Alaska tsunamis (Figure 5.9.7) was obtained by windowing 
in the frequency domain with the truncated Gaussian function (5.9.25). In the time 
domain, the traces represent the convolution of the original data series with the 
Gaussian weighting function. The authors first set c~ = 25 and chose/3 = 1, so that 
BAND = 0.20. The choice of 3 in (5.9.24) is arbitrary and can be set to unity, 
whereupon the bandwidth is determined by the e -1 values of the Gaussian function. 
For c~ = 25 but/3 = 2, we have BAND = 0.28, and so on. 

The flow chart for the analysis (Figure 5.9.8) is as follows: 

(1) Remove the mean and trend (linear or other obvious functional trend) from the 
digital time series, y(t).  

(2) Fourier transform the time series. If an FFT algorithm is to used for this purpose, 
augment  the time series with zeros to the nearest power of 2. 

(3) Evaluate the center frequencies, ,:n = a:n__I/BAND, for the array of narrow-band 
filters. The filters have a constant relative bandwidth, BAND, with the total width 
of each filter occupying the same number of rows in the log (frequency) scale. As 
noted on numerous occasions in the text, it is the length of the time series and the 
sampling rate which determine the frequency of the Fourier components. Since it 
often is difficult to get the frequencies obtained from the Fourier analysis to line 
up exactly with the center frequencies of the filters, select those components of the 
Fourier analysis which are closest to each member of the array and use these as 
the center frequencies. 

(4) Select equally spaced times (columns) for calculation of amplitude or phase, 
focusing mainly on the times following the arrival of the waves. 

(5) Filter the wave spectrum (sine and cosine functions of the Fourier transform) in 
the frequency domain with the Gaussian filter Hn(~:). This filter is symmetric 
about the center frequencies, ~:n. 
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Time series v(t) 
(remove mean 

and trend) 

Fourier transform 
y(t)-,,- Y(o)) 

Select center 
frequencies, e.g. 

rows of Fig. 5.9.7 

! 

Select times, e.g. 
columns of 
Fig. 5.9.7 

i 
Take the inverse 

Fourier transform 

Window the 
spectrum using 

H(co) 

Obtain amplitudes 
and phases 

Determine the 
quadrature 
spectrum 

I 

I 

Figure 5.9.8. Flow chart for application of the multiple-filter technique. (Adapted from Dziewonski et 
al., 1969.) 

(6) Take the inverse Fourier transform of the spectra using the same Fourier trans- 
form used in step 2. Since the inverse Fourier transform for the wave spectrum as 
windowed by the function Hn(w) yields only the in-phase component of the 
filtered signal for each wn, knowledge of the quadrature spectrum is also required 
for evaluation of the instantaneous spectral amplitudes and phases. The 
quadrature spectrum is found from the in-phase spectrum using 

Qn(oz) - Hn(a~)e i7~/2 (5.9.26) 

The amplitude and phase of the signal for each center frequency for each time are 
derived from the inverse Fourier transforms of the spectra and quadrature spectra. 

~7) Instantaneous spectral amplitudes and phases are computed for each time step. 
The procedure (5)-(7) is repeated for each center frequency. 

The multiple filter technique can be used to examine rotary components of current 
velocity fields. In this case, the input is not a real variable, as it is for scalar time 
series, but a complex input, w(t) = u(t) +iv(t). Figure 5.9.9 is obtained from the 
analysis of a 90-day time series of surface currents measured by a 15 m drogued 
satellite-tracked drifter launched off the Kuril Islands in the western North Pacific on 
4 September 1993 (Thomson et al., 1997). The 3-hourly sampling interval used for this 
time series was made possible by the roughly eight position fixes per day by the 
satellite-tracking system. Plots show the variation in spectral amplitude of the clock- 
wise and counterclockwise rotary velocity components as functions of time and fre- 
quency. For illustrative purposes, we have focused separately on the high and low 
frequency ends of the spectrum (periods shorter and longer than two days). Several 
interesting features quickly emerge from thesef-t  diagrams. For example, the motions 
are entirely dominated by the clockwise rotary component except within the narrow 
channel (Friza Strait) between the southern Kuril Islands where the motions become 
more rectilinear. The burst of clockwise rotary flow encountered by the drifter over 
the Kuril-Kamchatka Trench starting on day 28 was associated with wind-generated 
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Figure 5.9.9. Multiple-filter technique applied to the velocuy of a near-surface (15 m drogued) satellite- 
tracked drifter launched off the KuriI Island in 1993. S -  denotes the spectral amplitude (cm/s) of the 
clockwise rotary component versus frequency (cpd) and time (day); S § denotes the spectral amplitude of 

the counterclockwise component. (From Thomson et al., I997.) 

inertial waves whereas the strong clockwise rotary diurnal currents first encountered 
on day 40 and then again on day 55 were associated with diurnal-period continental 
shelf waves propagating along the steep continental slope of the Kuril Islands. 

5.10  D I G I T A L  F I L T E R S  

5.10.1 In troduc t ion  

Digital filtering is often an important step in the processing of digital oceanographic 
data. Applications include smoothing and decimation of time series, removal of 
fluctuations in selected frequency bands, and the alteration of signal phase. The term 
"decimation" originally meant the removal of every tenth point but is now commonly 
used for values other than 10. Digital filtering facilitates data processing by pre- 
conditioning the frequency content of the record. For example, filters are commonly 
used in studies of inertial waves to isolate current variability centered near the local 
Coriolis frequency, to remove background sea-level fluctuations in investigations of 
tsunamis, and to eliminate tidal frequency fluctuations in studies of low-frequency 
current oscillations (Figure 5.10.1). The terms "detided" or "residual" time series are 
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removed; (2) a comparatively flat pass-band that leaves the low-frequency components 
unchanged; (3) a clean transient response, so that rapid changes in the signal do not 
result in spurious oscillations or "ringing" within the filtered record; (4) zero phase 
shift; and (5) acceptable computation time. As a rule, many of these desirable features 
are mutually exclusive and there are severe limitations to achieving the desired filter. 
We are invariably faced with a trade-off between the ability of the filter to produce the 
required results and the amount of filter-induced data loss we can afford to tolerate. 
For example, improved statistical reliability (increased degrees of freedom) for 
specified frequency bands decreases the frequency resolution of a filter while more 
sharply defined frequency cut-offs lead to greater ringing and associated data loss. 

Suppose we have a time series consisting of the sequence 

X(tn)--Xn, n--O, 1, . . . , N -  1 (5.10.1) 

with observations at discrete times tn - to + nat  in which to marks the start time of the 
record and At is the sampling increment. A digital filter is an algebraic process by which a 
sequential combination of the input {Xn} is systematically converted into a sequential 
output (y,,}. In the case of linear filters, for which the output is linearly related to the input, 
the time domain transformation is accomplished through convolution (or "blending") of 
the input with the weighting function of the filter. Filters having the general form 

M L 

Yn - ~ hkxn-k + Z gjYn-j, n -- 0, 1, ...,N - 1 (5.10.2) 
k=-M j - - L  

(in which M, L are integers and hk, gi are nonzero weighting functions) are classified as 
recursive filters since they generate the output by making use of a feed-back loop specified 
by the second summation term. Such filters "remember" the past in the sense that all past 
output values contribute to all future output values. Filters based on the input data only 
% = 0), are classified as nonrecursive filters. Any filter for which - M  _< k _< M is said to 
be physically unrealizable (in the sense of any real-time output) because both past and 
future data are needed to calculate the output. Filters of this type have widespread 
application in the analysis of pre-recorded data for which all digital values are available 
beforehand. Filters for which 0 _< k _< M are said to be physically realizable or causal, and 
are used in real-time data acquisition and in forecasting procedures. 

Impulse response: The output {Yn} of a nonrecursive linear filter is obtained through 
the convolution 

M M 

Y" = Z hkXn-k -- Z hn-kXk' n -- 0, 1, ..., N -  1 (5.10.3) 
k=-M k=-M 

where hk are the time invariant weights and there are N data values Xo, x~, ..., XN_ 1. 
For a symmetric filter, the time domain convolution becomes 

M 

Y" = Z hk(x,-k + Xn+k), n -  0, 1, ..., N -  1 (5.10.4) 
k=0 

in which hk = h_h. The set of weights {hk} is known as the impulse response function 
and is the response of the filter to a spike-like impulse. To see this, we set x, = ~50., 



where 6m,n is the Kronecher delta function 

6m,n - O, 

- 1 ,  
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m # n  

m - n  
(5.10.5) 

Equation (5.10.1) then becomes 

M 

Yn - Z hk60.n-k -- hn 
k=-M 

(5.10.6) 

The summations in equations (5.10.3) and (5.10.4) are based on a total of 2M + 1 
specified weights with individual values of hk labeled by subscripts k = - M ,  - M  + 1, ..., 
M. To make practical sense, the number of weights is limited to M << N / 2  where N A t  is 
the record length. In reality, it is not possible to use equation (5.10.3) to calculate an 
output valueyn for each time tn. Because the response function spans a finite time (equal 
to 2MAt),  difficulties arise near the ends of the data record and we are forced to accept 
the fact that there are always fewer output data values than input values. There are three 
options: (1) We can make do with 2M fewer estimates ofyn (resulting from time losses of 
M A t  at each end of the record); (2) we can create values of X(tn) for times outside the 
observed range 0 _< t < (N - 1)At of the time series; or (3) we can progressively decrease 
the filter length, M, in accordance with the number of remaining input values. In the 
first approach, Xn is defined for n - 0, 1, ..., N - 1 whereasyn is defined for the shortened 
range n = M, M + 1, ..., N - (M + 1). In the second approach, the appendaged estimates 
of x,, should qualitatively resemble the data at either end of the record. For example, we 
could use the "mirror images" of the data reflected at the end points of the original time 
series. In the third approach, the valuesyM_l andYN-(M-1) are based on (M - 1) weights, 
the values YM-2 andYN_(M_2) on (M - 2) weights, and so on. 

Frequency response: The Fourier  transform ofy(t , )  in (5.10.3) is 

M 

Y(~) = Z yne-iw"/xt 
n=-M 

M M 
-- Z hke-iWh/xt E Xn-ke-iW("-~)/xt 

k=-M n=-M 

: H(w)X(w) 

(5.10.7) 

so that convolution in the time domain corresponds to multiplication in the frequency 
domain. The function 

y ( ~ )  M 
H(w) - X ( w )  Z hke-iwkAt' ~ -  ~n - 2 n n / N A t  (5.10.8) 

k=-M 

n - O, . . . ,  N/2 is known as the frequency response (or admittance function; see Section 
5.8.7) since it determines how a specific Fourier component  X(~) is modified as it is 
t ransformed from input to output.  For the symmetric filter (5.10.4), the transfer 
function reduces to 
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transition has a finite width. In the latter case, coc is defined as the frequency at which 
the mean filter amplitude in the pass-band is decreased by a factor of v/2 and should 
roughly coincide with spectral minima in the time series being analyzed; the power of 
the filter is down by a factor of 2 ( -3  dB) at the cut-off frequency. As its name implies, 
a low-pass filter lets through (or is "transparent" to) low-frequency signals but 
strongly attenuates high-frequency signals (cf. Figures. 5.10.3a, b). High-pass filters 
let through the high-frequency components and strongly attenuate the low-frequency 
components (cf. Figures. 5.10.3a, c). Band-pass filters permit only frequencies in a 
limited range (or band) to pass unattenuated. 

Low-pass filters are the most common filters used in oceanographic data analysis. It 
is through these filters that low-frequency, long-term variability of oceanographic 
signals is determined. The running-mean filter, which involves a moving average over 
an.odd number of values, is the simplest form of low-pass filter. More complex filters 
with better frequency responses, such as the low-pass Kaiser-Bessel window used in 
Figure 5.10.3(b), also are commonly used. High-pass filtered data are readily obtained 
by subtracting the low-pass filtered data from the original record from which the low- 
pass data were derived. One does not need to create a separate high-pass filter. 
Similarly, band-pass filters can be formed by an appropriate combination of low-pass 
and high-pass filters. In the ocean, seawater acts as a form of natural low-pass filter, 
attenuating high-frequency wave or acoustic energy at a much more rapid rate than 
low-frequency energy. Acoustic waves of a few hertz (cycles per second) can propagate 
thousands of kilometers in the ocean whereas acoustic waves of hundreds of kilohertz 
are strongly attenuated over a few hundred meters. 

High-pass filters are less frequently used than low-pass filters. Applications include 
the delineation of high-frequency, high-wavenumber fluctuations in the internal wave 
band (roughly 2f < co < N, where N is the Brunt-Vfiisfil/i frequency) and the isolation 
of seiche or tsunami motions in closed or semi-enclosed basins. Band-pass filters are 
used to isolate variability in relatively narrow frequency ranges such as the near- 
inertial frequency band or, in North America, the electronic-induced 60-cycle noise in 
high-frequency oceanic data caused by AC power supplies. 

The maximum range of frequencies that can be covered by a digital filter is 
determined at the high-frequency end by the Nyquist frequency, con = 7fiAt (radians/ 
unit time), and at the low-frequency end b~; the fundamental frequency, col --- 27r/T, 
where T = NAt  is the length of the record. The corresponding range in cycles/unit 
time are determined by fN = 1/(2At) and fl = 1/T. Provided that the cut-off 
frequencies are sufficiently far removed from the ends of the intervals, digital filters 
can be applied throughout the range, col <l co l< CON (fl < I f  I< fN). 

5.10.3.1 Bandwidth 

The difference in frequency between the two ends of a pass-band defines an important 
property known as the bandwidth of the filter. To illustrate the relevance of this 
property, we consider an ideal band-pass filter with constant gain, linear phase, and 
cut-off frequencies COcl, COc2 such that 

H(co) - Ho exp (-icoto), cocl <_ I co I< coc2 
(5.10.13) 

= 0, otherwise 

From (5.10.12c), the impulse response is 
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(a) Low-pass filter 

Pass band 

f~ 
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Stop band 

fN 

(b) High-pass filter 

Stop band 
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Pass band 
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f~ 
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o fr fr 
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t 
fN 

Figure 5.10.2. Frequency response functions, [H(f) ], for ideal filters. (a) Low pass; (b) high pass; and (c) 
band pass�9 The band-pass filter has been constructed from the combined low-pass and high-pass filters, fN 

and f~ are the Nyquist and cut-off frequencies, respectively. 

1 i~t,, ei~kAt ei~t,, iwkAt hk -- ~-~ Ho e- dw+ e- d 

~cl 

2tlo sin [/X~(kAt -to)] 
= 7r Awcos[f~(kAt- to)]  A ~ ( k A t - t o )  

(5.10.14) 

in which Q--l(~cl-~~c2) is the center frequency and /~-~c2--~cl is the 
bandwidth. For high or low-pass filters, the bandwidth is equal to the cut-off 
frequency. 

Using the fact that sinp/p ~ 1 as p ~ 0, we find that the peak amplitude response 
of the filter (5.10.14) is directly proportional to the bandwidth A,~ as 
A w ( k A t -  to) -~ O. Note also that a narrow-band filter (one for which AM ~ 0) will 
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2 0  

~ ,  I 0  
E 

~. 0 
O 

- I 0  

L o w - f r e q u e n c y  

- 2 0  ' '  J2 ' 4 ' ' ~ ' '8 ' ~ ' ' ~- 
0 l 2 3 6  4 6 0  7 2  

2 0  

10  

0 

- I 0  

- 2 0  
o 

T i m e  ( h o u r )  

Figure 5.10.3. Filtering of a tide gauge record for Ulsan, Korea using low and high-pass Kaiser-Bessel 
filters (windows) with length T/27 = 3 h; T = 81 h is the record length and At = 0.5 min the sampling 
increment. (a) Original record; (b) low-pass filtered record; (c) high-pass filtered record. (Courtesy, A. 

Rabinovich.) 

oscillate longer (i.e. persist to higher values of k) than a broad-band filter when 
subjected to a transient loading. Put another way, the persistence of the ringing that 
follows the application of the filter to a data set increases as the bandwidth decreases. 
From a practical point of view, this means that the ability of a filter to resolve 
sequential transient events is inversely proportional to the bandwidth. The narrower 
the bandwidth (i.e. the finer the resolution in frequency), the longer the time series 
needed to resolve individual events. For example, if we use a band-pass filter to isolate 
inertial frequency motions in the range 0.050-0.070 cph, the bandwidth 
Af = Aw/27T = 0.020 cph and the filter could accurately resolve inertial events that 
occurred about 1 / A f  = 50 h apart. If we now reduce the bandwidth to 0.010 cph, the 
filter is only capable of resolving transient motions that occur more than 100 h apart. 
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12[ 
H(w) - -~ +-re sin (coAt) + 

sin (5wAt) ] sin (3~At) + + (5 10 19) 
3 5 . . . . .  

which must be truncated after a finite number of terms. 
Successive approximations to the series (5.10.19), and hence to the function 

(5.10.15), are not convergent near discontinuities such as that for the step-like 
transition region of the ideal high-pass filter shown in Figure 5.10.4. In this example, 
the filter amplitude I H(w) ] is zero for w < Wc (the stop band) and unity for 
Wc < w < WN (the pass band). The succession of overshoot ripples, or ringing, is 
known as Gibbs'phenomenon. The ripple period, T = pTrt (p is an integer), is fixed but 
increasing the number of terms in the Fourier series for H(w) decreases the distortion 
due to the overshoot effects. However, even in the limit of infinitely many terms, 
Gibbs' phenomenon persists as the amplitude of the first overshoot diminishes 
asymptotically to about 0.18 or about 9% of the pass-band amplitude. The first 
minimum decreases asymptotically to about 5% of the pass-band amplitude. In the 
limit of large N --, oc, it can be shown (Godin, 1972; Hamming, 1977) that 

1/ 
H~(O) ~ -  s inu /u  du 

7"C 

o 

(5.10.20) 

The values of H ~  (0) can be found in tables of the sine integral function. In the case of 
Figure 5.10.4, the value for the first maximum is 1.08949 ( - 1.0 + 0.08949) while that 
for the first undershoot is 0.9514 ( = 1.0 - 0.04858). 

Gibbs' phenomenon has considerable importance in that it occurs whenever a 
function has a discontinuity. For example, suppose that we want to use equation 
(5.10.19) to remove spectral components near a cut-off frequency, Wc. Unless the 
spectral components in the stop and pass-bands are well separated relative to the 
width of the transition zone, the finite ripples will cause leakage of unwanted energy 
into the filtered record. Noise from the stop-band will not be completely removed and 
certain frequencies in the pass-band will be distorted. A critical aspect of filter design 
is the attenuation of the overshoot ripples using smoothing or tapering functions 
(windows). As discussed in Section 5.6.6, windows are important in reducing side-lobe 
leakage in spectral estimates. 

Further  difficulties arise when we apply the weights {hk} of an ideal filter in the 
time domain. Consider the nonrecursive, low-pass filter (positive frequency only) 

H(w) - 1, 0 <_ w 5_ Wc (5.10.21) 
= 0 otherwise 

for which the impulse function is, for k = - N ,  ..., N 

1 ~c 
= 2 - ,  c o s  h (tk ) = hk wN ~=o ( kAt)A  

sin (wckAt) 

wmkAt 

fc sin (27rfckAt) 

fN 2rrf~kAt 

(5.10.22) 
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in which ho - f J f N .  The weights hk attenuate slowly, as 1/k, so that a large number of 
terms are needed if the filter response H(w)  is to be effectively carried over to the time 
domain. In addition to being computationally inefficient, filters constructed from a 
large number of weights lead to considerable loss of information at the ends of the 
data sequence. Practical considerations force us to truncate the set of weights thereby 
enhancing the overshoot problem associated with Gibbs' phenomenon in the 
frequency domain. Moreover, if we truncate the length of the data set (5.10.1), we 
are unable to accurately replicate (5.10.21) in the frequency domain. This leads to a 
finite slope between the stop and pass-bands of the filter. 

The situation is similar for high-pass filters 

H(w)  - O, 0 < w < wc (5.10.23a) 
= 1, otherwise 

In this case 

CO N 

= ~ cos (wk/Xt)Aw 
hk WN ~o=~ 

= fc sin (2rrfckAt) k - - N ,  ..., N 
fN 27rfckAt ' 

(5.10.23b) 

where ho = 1 -f~/fo. Notice that, except for the central term ho, the weights hk of the 
high-pass filter (5.10.23b) are equal to minus the weights hk of the low-pass filter 

Figure 5.10.4. Gibbs'phenomenon (overshoot ripples) arising from successive approximations to the step- 
like function IH(w)l = 1, w, < ,a < CJN, and zero otherwise, w,. = 27rf, is the cut-off frequency. Curves 

are derived from (5.10.19) using M = 3, 7, and 11 terms. 
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passed through H2(w); the output from H2(~) is then passed through H3(~), and so 
on until the last filter, Hq(w). The final output from Hq(w) corresponds to the sought- 
after output from H(w). Although the technique is straightforward and helps to 
minimize roundoff error, it has a number of major drawbacks, including the need for 
extended computations and the possibility of repeated ringing as one filter after 
another is applied in succession. 

A high-pass filter HH(~) is obtained from its low-pass counterpart HL(~) by the 
relation HH(aJ)= 1-HL(w)  where, in theory, the combined output from the two 
filters simply recreates the original data, since HL(W)+HH(w)= 1. This has 
advantages in situations where He(w) is easily derived or is already available. In 
the time domain, the high-pass filtered record {Y'n) is obtained by subtracting the 
output {yn} from the low-pass filter form the input time series {xn}. Care is needed to 

/ ensure that the times of yn and Xn are properly aligned so that Y n -  x n - y n , n -  M, 
M + I , . . . , N - 2 M .  

A band-pass filter can be constructed from an appropriate high and low-pass filter 
using the method illustrated in Figure 5.10.2(c). Here, the cut-off frequency of the 
low-pass filter becomes the high-frequency cut-off of the band-pass filter; similarly, 
the cut-off frequency of the high-pass filter becomes the low-frequency cut-off of the 
band-pass filter. The cascade then has the form HB(~)= HL(~) x HH(,~). 

Because nonrecursive filters are symmetric (H(,~) is a real function), there is no 
shift in phase between the input and output signals. This feature of the filters, as well 
as their general mathematical simplicity, has contributed to their popularity in 
oceanography. Recursive filters, on the other hand, are typically nonsymmetric. This 
introduces a frequency-dependent phase shift between the input and output variables 
and adds to the complexity of these filters for oceanic applications. Despite these 
difficulties, recursive filters are useful additions to any processing repertoire. The 
good news is that we can remove phase shifts introduced through the "forward" 
application of the filter by reversing the process and passing the data "backward" 

I01 

10  0 

i 0  -! 

10  .2 

10  -3 
o 

10 -4 

10-5 

10-6 

!!!. 'l: 
!f ,i 

10 .7  i l I . I , l i i l : •  
0 . 0 4 0  0 . 0 4 4  0 , 0 4 8  0 . 0 5 2  

Frequency (cph) 

Figure 5.10.5. Frequency-response functions for low-pass filters with different transition bands. Solid 
line: A step-like transition band. Long-dashed line: A nine-point cosine-tapered transition band. Short- 
dashed line: A three-point optimally designed transition band. The cut-off associated with each filter 

causes ringing through the entire data set. (From Elgar, 1988.) 
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through the filter. In performing the latter step, we must be careful to invert the order 
of the record values between the forward and backward passes. Specifically, if the 
recursive filter introduces a phase shift ~,b(co) at frequency co (or equivalently, a time 
shift ~5/co = qS/2rrf), it will introduce a compensating shift -qS(co) when passed in the 
reverse order through the filter. To show this sequence let x l ,  x2, . . . ,  x~ be the original 
data sequence used as input  to a given filter with nonzero phase characteristics, and 

Yl ,Y2 ,  ... ,Yn the output from the filter (Figure 5.10.6). If we now invert the order of the 
output  and pass the inverted signal through the filter again, we obtain a new output z~, 
z2, . . . ,  zn. The order of the z-output is then inverted to form zn, z,,_ ~, ..., Zl, which returns 
us to the proper time sequence. For simplicity we can rewrite this later sequence as 
Y'I ,Y~, -.-, Y'n" The act of applying the filter a second time cancels any phase change from 
the first pass through the filter. Note that this corresponds to squaring the transfer 
function so that the final transfer function for the recursive filter is I H(cc) ]2. 

As an example of a phase-dependent  recursive filter, consider the high-pass quasi- 

difference f i l ter 

y ( n A t )  - x ( n A t )  - c~x[(n - 1)At] (5.10.27a) 

where c~ is a parameter  in the range 0 < o~ _< 1 ; o ~ - 1  corresponds to the simple 
difference filter (Koopmans, 1974). The transfer function for this filter is 

H(co) - 1 - cte -i~~ (5.10.27b) 

and the phase function is 

~5(co) - tan-l[oe sin (coAt)/(1 - o~cos (coAt))] (5.10.27c) 

Reversing the order of the output  from the first pass of the data through the filter and 
then running the t ime-inverted record through the filter again is tan tamount  to 
passing the data through a second filter H(co)*. This introduces a phase change -~,b(co) 
which cancels the phase change ~b(co) from the first filter (Figure 5.10.7). The 
symmetr ic  filter obtained from this cascade is then 

[ H(co)12 = H(co) x H(co)* 

= (1 - o~e-i~~ - cte +i~at) - [1 - 2ol cos (coAt) + 012] 1/2 
(5.10.27d) 

5.10.5 Running -mean  filters 

The running-mean or moving-average fi l ter is the simplest and one of the most 
commonly used low-pass filters in physical oceanography. In a typical application, the 
filter (which is simply a moving rectangular window) consists of an odd number  of 2M 
+ 1 equal weights, hk, k = 0, +1, . . . ,  i M ,  having constant values 

1 
hk = 2M + 1 (5.10.28a) 

where hk resembles a uniform probability density function in which all occurrences 
are equally likely. The running-mean filter produces zero phase alteration since it is 
symmetric  about k = 0, it satisfies the normalization requirement 
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Input data 

X I ~ . . . . .  , X n  

Recursive 
filter H(to) 

Output data 

Yl . . . . . . .  Yn 

Output data 

Z l , -  . . . .  ,Zn 

Recursive 
filter H(to) 

Input data 

Yn . . . . . . .  Y 1 

order of the ) Final output series has been 
, , " filtered by the net filter H(to)l 2 

- y l  ....... Y n  

Figure 5.10.6. The processing sequence for a nonsymmetric recursive filter H(~) which removes phase 
changes ~(~v) introduced to the data sequence xi (i = 1 . . . .  , n) by the filter. This cascade produces a 

symmetric squared-filter response [H(~)12. 

M 

Z h k -  1 (5.10.28b) 
k = - M  

and is straightforward to apply. To obtain the output sequence {Ym} for input sequence 
{x,,}, the first 2M + 1 values ofxn (namely Xo, Xl, . . . ,  X2M) are summed and then divided 
by 2M § 1, yielding the first filtered valueyM = y ( 2 M A t / 2 ) .  The subscript M reminds 
us that the filtered value replaces the original data record xM at the appropriate location 
in the time series. The next value, yM + 1, is obtained by advancing the filter weights 
one time step At and repeating the process over the data sequence xl, x2, ..., x2M+l and 
so on up to N - 2M output values. The {Ym} consist of a "smoothed" data sequence with 
the degree of smoothing, and associated loss of information from the ends of the input, 
dependent on the number of filter weights. Mathematically .... 

1 2M 

YM+i -- 2 M  + 1 . xi+j , i -  0, ..., N -  2M (5.10.29) 

A high-pass running-mean filter can be generated by subtracting the output {Ym } from 
the original data. The output {y'} for the high-pass filter is 

! 

Ym -- Xm --Ym, m -- M ,  M + 1, ..., N - 2M (5.10.30) 

where we make certain we subtract data values for the correct times. This technique of 
obtaining a high-pass filtered record from a low-pass filtered record will also be 
applied to other types of filters. 

The transfer function H(~) for the running-mean filter is given by equation 
(5.10.8). Using equation (5.10.27) and the fact that At -7r /~N,  we find that 

1 ~ 1 + 2 sin I (Tr /2M)(w/~N)]  cos [Tr/2(M + 1)(,~/WN)] ~ 
H(~) - 2M + 1 ~, sin (7r/2 ~/~N) ) 

1 sin [Tr/2(2M + 1)(~/~N)] 

2M + 1 sin [(Tr/2)(~/~N)] 

(5.10.31a) 

(5.10.31b) 
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Figure 5.10.7. The phase change O(a;) for a quasi-difference filter (with c~ = 0.5 as a function of 
frequency, ~). 

where H( , ; ) -~  1 as , ; / ~X- - '  O. As M increases, the central lobe of the transfer 
function narrows (Figure 5.10.8) and the cut-off frequency (at which I H ( ~ ) I -  
e-llH(0)l) moves closer to zero frequency. The filter increasingly isolates the true 
mean of the signal. Unfortunately, the filter has considerable contamination in the 
stop-band due to the large, slowly attenuating side-lobes. Reduction of these side-lobe 
effects requires a long filter which means severe loss of data at either end of the time 
series. The running-mean filter should therefore only be used with long data sets 
("long" compared with the length of the filter). Accurate filtering requires use of more 
sophisticated filters. 

For the three-point weighted average, hk - 1/3 and equation (5.10.31) yields 

1 [1 + 2 cos (Trw/~n)] H(,;; 3) - ~  

1 sin [(37r/2)(~/wn)] 
- . . -  _ 

3 sin [(Tr/2)(a;/~n)] 

(5.10.32) 

while for five-point weighted average, hk = 1/5 and 

1 sin [(57r/2)(~/WN)] 
H(~; 5) = ~ sin [(Tr/2)(u;/wn)] 

(5.10.33) 

(Figure 5.10.8). Numerous examples of running-mean filters appear in the oceano- 
graphic literature. A common use of running-mean filters is to convert data sampled 
at times t to an integer multiple of this time increment for use in standard analysis 
packages. Data collected at intervals At of 5, 10, 15, 20, or 30 min are usually con- 
verted to hourly data for use in tidal harmonic programs, although the least-squares 
algorithms used in these programs also work with unequally spaced time-series data 
(e.g. Foreman, 1977, 1978). Running-mean filters also are commonly used to create 
weekly, monthly, or annual time series (Figure 5.10.9). 
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5.10.6 Godin-type  filters 
For the low-pass filtering of sub-hourly sampled tidal records prior to decimation to 
"s tandard" hourly values, Godin (1972) recommends the use of cascaded running- 
mean filters with response functions of the form 

2 A 2 
A,,A,,§ ~A~+ 1 (5.10.34) 

n2(n + 1)' n(n + 1) 2 

Here, A, and An+l a r e  the average values of n and n + 1 consecutive data points, 
respectively. Each filter smoothes the data three times. In the first version in (5.10.34), 
the smoothing is performed twice using the n-point average and once using the {n + 
1 }-point average. The alternative version uses the {n + 1 }-point average twice and the 
n-point average once. Following the filter operation, the smoothed records can then be 
sub-sampled at hourly intervals without concern for aliasing by higher-frequency 
components. For the second version in (5.10.34), the response function is 

1 sin2[(rr/2)(nco/WN)] sin [(rc/2)(n + 1)cJ/CJN] 
H(co) - n2(n + 1) sin 3[(rr/2)(co/coN)] (5.10.35) 

Godin filters (A 2ed14)/(12214) are used routinely to smooth oceanographic time series 
sampled at multiples of 5-min increments prior to their use in tidal analysis programs. 
On the other hand, 30-min data would first be smoothed using the filter (A2A3)/(223) 
(Figure 5.10.10) and then decimated to hourly data. Conversion of 30-min data from 
Aanderaa RCM4 current meters to hourly data requires such a three-stage running- 
average filter. The filter is needed to convert the instantaneous directions and average 
speeds from the current meter to quantities more closely resembling vector-averaged 
currents. Application of the moving low-pass filter (5.10.34) removes high-frequency 
components and helps avoid the aliasing errors that would occur if the raw data were 
simply decimated to hourly values without any form of prior smoothing. Simply picking 
out a value each hour is, of course, akin to not having recorded the higher frequency 
variability in the first place. Some care is required in that the smoothing process reduces 
the amplitude of various Fourier components outside the tidal band. As a result, amp- 
litudes of Fourier components derived after application of the filter must be corrected 
(recolored) in inverse proportion to the amplitude of the filter at the particular 
frequency. Phases of the Fourier components are unaltered by this symmetric filter. 

The formulation (5.10.34) also can be used to generate low-pass filters to remove 
diurnal, semidiurnal, and shorter period fluctuations from the hourly records. Although 
these filters have been criticized in recent years because of their slow transition through 
the high-frequency end of the "weather band" (periods longer than two days), they are 
easy to apply, have good response in the daily tidal band and consume relatively little 
data from the ends of the time series. The most commonly used version of the low-pass 
Godin filter is (A~4A25)/(24225) in which the hourly data are smoothed twice using the 
24-point (24-h) average and once using the 25-point average. The filter response is 

1 sin 2124(rr/2)(co/~oN)] sin [25(rr/2)(co/coN)] 
H(,a) = 2422 5 sin [(rr/2)(co/coN)] 

(5.10.36) 
_ ~ 1  sin 2(24rrfAt) sin (25rrfAt) 

24225 sin 3 (rrfAt) 

where as before ~ = 27rf (/is in cycles per hour), ~N = 7r/At and At = 1 h. Note that a 
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Figure 5.10.8. The frequency response functions, ]H(,~)I, for running-mean (weighted average) filters for 
M = 3, 5, 9. ~N = Nyquist frequency. 

total of 35 data points (i.e. 35 h) are lost from each end of the time series and that the 
filter has a half-amplitude point near 67 h (Figure 5.10.11). The weights of this 
symmetric 71-h-length filter are (Thompson, 1983) 

1/2 
h k - 2 4 2 2 5 [ 1 2 0 0 - ( 1 2 - k ) ( 1 3 - k ) - ( 1 2 + k ) ( 1 3 + k ) ] ,  O<_k <_ 11 

(5.10.37) 
1/2 

-24225 (36 - k) (37 - k), 12_<k___35 

The Godin low-pass filter (5.10.37) effectively removes all daily tidal period energy 
except for slight leakage in the diurnal frequency band. More precisely, the filter 
eliminates variability due to the principal mixed diurnal constituent, K1, for which 
the amplitude is down by 3.2 • 10 -:-3, and is only slightly less effective in removing 
variability due to the declinational diurnal constituent, O1. The filter represents a 
marked improvement over the simple A24 and A25 running-mean filters and Doodson 
filter commonly used earlier for tidal analysis (cf. Groves, 1955). The principal failing 
of the Godin filter is its relatively slow transition between the pass and stop-bands 
which leads to significant attenuation of nontidal variability in the range of two to 
three days. This shortcoming of the filter has inspired a number of authors to 
investigate more efficient techniques for removing the high-frequency portion of 
oceanographic signals. The cosine-Lanczos filter, the transform filter, and the Butter- 
worth filter are often preferred to the Godin filter, or earlier Doodson filter, because of 
their superior ability to remove tidal period variability from oceanic signals. 

5.10.7 Lanczos-window cosine filters 

As mentioned in Section 5.10.3.2, transfer functions for ideal (rectangular) filters are 
formulated in terms of truncated Fourier series. This leads to overshoot ripples 
(Gibbs' phenomenon) near the cut-off frequency with subsequent leakage of unwanted 
signal energy into the pass band. Lanczos-window cosine filters are reformulated 
rectangular filters which incorporate a multiplicative factor (the Lanczos window) to 
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Figure 5.10.9. Daily mean time series of cross-shelf (top) and longshelf (bottom) near-surface currents off 
Cape Romain in the South Atlantic Bight for the period lOJanuary 1979 to 11 April 1979. Thin line: 

Daily average data. Thick line: 30-day running-mean values. (From McClain et al., 1988.) 
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I I 
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Figure 5.10.10. The frequency-response function, [H(f)[,for the Godin-type filter A~2,d3/(223) used to 
smooth 30-min data to hourly values. The horizontal axis has units fat ,  with f:v At = 0.5;f, is the cut- 

off frequency. (From Godin, 1972.) 



Time-series Analysis Methods 535 

rectangular filters which incorporate a multiplicative factor (the Lanczos window) to 
ensure more rapid attenuation of the overshoot ripples. A variety of other windows can 
also be used. The terms Lanczos-cosine filter and cosine-Lanczos filter are commonly 
used names for a family of filters using windows to reduce the side-lobe ripples. Owing 
to their simplicity and favorable characteristics, these filters have gained considerable 
popularity among physical oceanographers over the years (Mooers and Smith, 1967; 
Bryden, 1979; Freeland et al., 1986). 

5.10. 7.1 Cosine filters 

We start with an ideal, low-pass filter with transfer function 

H ( a ) - i  0__ [ a ] _ < a ~  

-- 0 elsewhere 
(5.10.38) 

and assume that the function H(a)  is periodic over multiples of the Nyquist frequency 
domain ( - aN,  aN). Written as Fourier series, the response function is 

M 
H(a) ao -- -}- + ~ [a~ cos (akAt) + bk sin (oAAt)] (5.10.39) 

k=l 

where we have truncated the series at M << N; as usual, N is the number of data points 
to be processed by the filter. To eliminate any frequency-dependent phase shift, we 
insist that H(~)  - H ( - a ) ,  whereby b~ = O. The resulting cosine filter has the transfer 
function 

M 

H(w) -- ho + ~ hk cos (Trka/wN) (5.10.40) 
k=l 

where coefficients hk (= 21ak) given by 

o.) N 

1 / H(a)cos(Trka/aN)da (5.10.41) hk - a:v 
O 

with k = 0, 1, . . . ,  M. The weighting terms hk are those which determine the output 
series {Yn) for given {Xn}. We assume that M is sufficiently large that H(a)  is close to 
unity in the pass-band and near zero in the stop-band. 

I 
-0.2 

1 

-f~ L ~ _ . J  f< J 
.o., I o V - o . ,  ' - - H  o', 0.2 

fat 

Figure 5.10.11. Same as Figure 5.10.10 but for the Godin-type low-pass filter A~sA24/(25224) used to 
eliminate tidal oscillations in hourly data. (From Godin, 1972.) 



536 D a t a  Analys is  M e t h o d s  in Physical  Oceanography 

For a low-pass cosine filter, 0 _< [w] _< w~ defines the bounds of the integral (5.10.41) 
and the weights are given by 

w~ sin(Trkw~/coN) 
hk = , k -  0, +1, ..., MY/ (5.10.42) 

CON 7rk&c /CON 

for which ho - COc/CON. The corresponding weights for a high-pass filter, ]w] > Wc, are 

ho - 1 - wc/WN, k - 0 (5.10.43) 

-Wc sin(zrkWc/WN) 
hk -- , k -  4-1, ..., + M  (5.10.44) 

CON 7rk~c /WN 

That is, ho (high pass) = 1 - ho (low pass) while for k -r 0, the coefficients hk are simply 
of opposite sign. The functions (5.10.42) and (5.10.44) are identical to those discussed 
in context of Gibbs' phenomenon. Thus, the cosine filter is a poor choice for 
accurately modifying the frequency content of a given record based on preselected 
stop and pass-bands. As an example of the response of this filter, Figure 5.10.12 
presents the transfer function 

9 

H(w)  - 0.4 + 2 Z [sin(O.4kTc)/k~r] cos (kco) 
k=l  

for a low-pass cosine filter with Wc/CON - -  0.4 and M = 10 terms. This filter response is 
compared to the ideal low-pass filter response and to the modified cosine filter using 
the Lanczos window (with sigma factors) discussed in the next section. 

5.10. 7.2 The Lanczos  w i n d o w  

Lanczos (1956) showed that the unwanted side-lobe oscillations of the form sin(p)/p in 
equations (5.10.42) and (5.10.44) could be made to attenuate more rapidly through use 
of a smoothing function or window. The window consists of a set of weights that 
successively average the (constant period) side-lobe fluctuations over one cycle, with 
the averaging period determined by the last term kept or the first term ignored in the 
Fourier expansion (5.10.44). In essence, the window acts as a low-pass filter of the 
weights of the cosine filter. The Lanczos window is defined in terms of the so-called 
sigma-factors (cf. Hamming, 1977) 

sin(Trk/M) 
cy(M,k) - (5.10.45) 

;rk/M 

in which M is the number of distinct filter coefficients, hk, k - 1 ,  ..., M and 
WM -- ( M -  1 ) /M is the frequency of the last term kept in the Fourier expansion. 
Multiplication of the weights of the cosine filter by the sigma factors yields the desired 
weights of the Lanczos-window cosine filter. Thus, the weights of the low-pass cosine- 
Lanczos filter become, using or(M, 0 ) -  1 

ho - We/WN, for k = 0 (5.10.46a) 
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sin ( r&coc /coN ) 
hk --(Wc/WN) rrkwc/coN a(M,k )  (5.10.46b) 

for k - + l ,  ..., z~4 and M <<N. The corresponding weights for the high-pass 
Lanczos-cosine filter are 

ho - 1 - C o c / C o N ,  for k - 0 (5.10.47a) 

s in ( rrkwc / coN ) 
hk----(coc/coN) 7rkcoc/coN a (M,k )  (5.10.47b) 

The transfer function (5.10.39) for a low-pass cosine-Lanczos filter is then 

M-1 sin(rrkcoc/coN) ] 
HL(co) -- Wc 1 + 2 Z a (M,k )  rrkWc/cou cos (Trkw/wu) 

C~ k=l 
(5.10.48) 

while for the high-pass cosine-Lanczos filter 

HH(w)  -- 1 - HL(W) (5.10.49) 

Examination of the transfer functions in Figure 5.10.12 reveals that the side-lobe 
ripples are considerably reduced by the sigma factors of the Lanczos window. Again, 
the tradeoff is a broadened central lobe, so that, although there is much less contam- 
ination from frequencies within the stop-band, the transition of the filter amplitude at 
the pass-band is less steep than that for the cosine filter. The effect of this smoothing, 
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Figure 5.10.12. Approximations to the frequency response of an ideal low-pass filter (dashed line). Solid 
curves give: The frequency response for an unwindowed cosine filter, a Lanczos-cosine filter that uses 
sigma factors, and the response after double application of the Lanczos-cosine filter. Filters use M = 10 
Fourier terms and w,. = 0.4~N ; WN = Nyquist frequency. Gibbs' effect is reduced by the sigma factors of 

the Lanczos window. (From Hamming, 1977.) 
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which represents a long period modulation of the weighting terms hk in (5.10.42), can 
be illustrated numerically by taking a record length N = 25 and calculating the filter 
response H(co/coN) with and without the sigma factors. This exercise is instructive in 
other ways in that it emphasizes the effect of truncation errors during the calculations 
and indicates what happens if coo~coN is too near to the ends of the principal interval 
0 < co/coN _< 1. Consider the case coc/coN --0.022, N -  25, and filter truncation at the 
fourth decimal place. For a high-pass cosine-type filter with no Lanczos window 
(which we want to have zero amplitude near zero frequency), we find H(0) = 0.0740 
whereas use of the sigma factors (Lanczos window) yields H(0) = 0.4015. With the cut- 
off frequency so close to the end of the frequency range, the sigma factors clearly 
degrade the usefulness of the filter. Increasing the record length to N = 50 Ibr the 
same cut-off frequency improves matters considerably; in this case, H(0) - 0.0527 and 
H(1) = 0.9997 using the sigma factors. 

5.10. 7.3 Practical filter design 

Design of a low or high-pass cosine-Lanczos filter begins with specification of: (1) The 
cut-off frequency; and (2) the number M of weighting terms required to achieve the 
desired roll-off between the stop and pass-bands. The cut-off frequency is then 
normalized by the Nyquist frequency, coN, obtained from the sampling interval At of 
the time series. As with other types of filters, it is advantageous to keep the normalized 
cut-off frequency away from the ends of the principal interval 

0 <_ co~coN _< 1 (5.10.50) 

The weights hk are then derived via (5.10.46) and (5.10.47). 
Using (5.10.4) and (5.10.8), and assuming an input {Xn}, n -  0, 1, ..., N -  1, the 

output for a low-pass cosine-Lanczos filter with M + 1 weights is 

2coc[ x a 4  ] 
Y" -- ~WN n + ~F(k)(xn-kk=, + x,+k) (5.10.51a) 

in which 

k sin(Trk/M) sin(Trkcoc/coN) F(k) _ 2  
7rk /M 7rkcoc /coN 

(5.10.51b) 

The output time series begins with yM -y (MAt)  corresponding to the first calculable 
value for the given filter length, M, and the assumption that the input data begin at xn 
- Xo. That is 

2coc 
Ix 1F(1)(xM_l + YM -- CON M +-~ XM+I) 
h,.  

1 + -jF(2)(xM_2 + xM+2) + ... (5.10.52) 

1 
F(m)(xo + x2M)] . . . §  

J 

The chosen number of filter coefficients, M, is always a compromise between the 
desired roll-off of the filter at the cut-off frequency and the acceptable number of data 
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Let w = w(co) be a monotonically increasing rational function of sines and cosines 
in the frequency, co. The monotonic function 

HL(co)t 2 -  1/[1 + (w/w,)2q I (5.10.58) 

(Figure 5.10.14) generates a particularly useful approximation to the squared gain of 
an ideal low-pass recursive filter with frequency cut-off ,4. (Our filter design will 
eventually require w(0) - 0 so that the final version of HL(co) will closely resemble 
(5.10.58).) 

Butterworth filters of the form (5.10.58) have a number of desirable features (Roberts 
and Roberts, 1978). Unlike the transfer function of a linear nonrecursive filter 
constructed from a truncated Fourier series, the transfer function of a Butterworth 
filter is monotonically flat within the pass and stop-bands, and has high tangency at 
both the origin (co = 0) and the Nyquist frequency, coN. The attenuation rate of HL(co) 
can be increased by increasing the filter order, q. However, too steep a transition from 
the stop-band to the pass-band can lead to ringing effects in the output due to Gibbs' 
phenomenon. Since it has a squared response, the Butterworth filter produces zero 
phase shift and its amplitude is attenuated by a factor of two at the cut-off frequency, 
for which w/wc = 1 for all q. In contrast to nonrecursive filters, such as the Lanczos- 
cosine filter discussed in the previous section, there is no loss of output data from the 
ends of the record; N input values yield N output values. However, we do not expect to 
get something for nothing. The problem is that ringing distorts the data at the ends of 
the filtered output. As a consequence, we are forced to ignore output values near the 
ends of the filtered record, in analogy with the loss of data associated with nonrecursive 
filters. In effect, the loss is comparable to that from a nonrecursive filter of similar 
smoothing performance. A subjective decision is usually needed to determine where, at 
the two ends of the filtered record, the "bad" data end and the "good" data begin. 

Butterworth filters fall into the category of physically realizeable recursive filters 
having the time-domain formulation (5.10.2) with k = 0, . . . ,  M. They may also be 
classified as infinite impulse response filters since the effects of a single impulse input 
can be predicted to an arbitrary time into the future. To see why we expect w(co) to be 
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Figure 5.10.13. Expanded views of the filter responses for two tide-elimination filters for the diurnal 
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a rational function in sines and cosines, we use (5.10.2) and the fact that H(w) is the 
ratio of the output to the input. We can then write 

M 
hke -i~'k/xt 

H(w) - o u t p u t _  _ k=0 
input L (5.10.59) 

1 -- ~ gje -i"JkAt 
j=l 

where the summations in the numerator and denominator involve polynomials in 
powers of e x p ( - i w k A t )  which can in turn be expressed through the variable w. The 
substitution z = exp(iwkt) leads to expression of the filter response H(w) in terms of 
the z-transform and zeros of poles. 

5.10. 8.1 High-pass and band-pass filters 

High-pass and band-pass Butterworth filters can be constructed from the low-pass 
filter (5.10.58). For example, to construct a high-pass filter with cut-off, we, we use the 
transformation w/wc ~ - ( w / w c )  -1 in (5.10.58). The square transfer function of the 
high-pass filter is then 

Figure 5.10.14. The frequency response functions IHz(w)[ ~ for an ideal squared, low-pass Butterworth 
filter for filter orders q = 4, 6, 8. Bottom panel gives response in decibels (dB). Power = 0.5 at the cut-off 

frequency, ~c. 
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]HH(W)I 2 -- (W/Wc)2q / [ l  + (W/Wc)  2q] (5 .10 .60)  

where, as required 

[HH(W)I 2 -- 1 - - [HL(W)I  2 (5.10.61) 

Band-pass Butterworth filters (and their counterparts, stop-band Butterworth filters) 
are constructed from a combination of low-pass and high-pass filters. For instance, the 
appropriate substitution in (5.10.58) for a band-pass filter is w / w c -  w , / w c -  
(w,/Wc) -1 which leads to the quadratic equation 

(w,/Wc) 2 - (W/Wc)(W,/Wc) - 1 = 0 (5.10.62a) 

with roots 

W,l .2 /Wc -- (W/Wc)/2 + [(W/Wc)2/4-4-  1] 1/2 (5.10.62b) 

Substitution of w/wc -- +1 (the cut-off points of the low-pass filter) yields the norm- 
alized cut-off functions w,1/wc =0.618 and w,2/Wc = 1.618 of the band-pass filter 
based on the cut-off frequency +~c of the associated low-pass filter. The corres- 
ponding band-pass cut-off functions for the cut-off frequency -~c  of the low-pass 
filter are w,1/Wc = -1.618 and w,2/Wc = -0.618. Specification of the low-pass cut-off 
determines w,1/w,2 of the band-pass filter. The bandwidth Aw/wc=--(W, l - -  
w,2)/Wc = 1 and the product (w,l/wc)(w,2/Wc)= 1. Note that specification of 
w,1 and w,2 gives the associated function We of the low-pass filter 

2 (5 .10 .63)  W , I B , 2  -- W c 

5.10.8.2 Digital formulation 

The transfer functions (5.10.58)-(5.10.61) involve the continuous variable w whose 
structure is determined by sines and cosines of the frequency, ~. To determine a form 
for w(w) applicable to digital data, we seek a rational expression with constant 
coefficients a to d such that the component exp(iwAt) in (5.10.59) takes the form 

aw +b 
exp(iwAt) - ~ (5.10.64) 

cw +d 

(Here, we have replaced - i ~ A t  with +i~oAt without loss of generality.) As discussed 
by Hamming  (1977), the constants are obtained by requiring that w = 0 corresponds to 
w = 0 and that ~ ~ 7r/At corresponds to w ~ -t-~. Constants b and d (one of which is 
arbitrary) are set equal to unity. The final "scale" of the transformation is determined 
by setting (~/27r)At = 1/4 for w = 1. This yields 

1 + i w  
exp(i~At) -- 1 - iw (5.10.65) 

or, equating real and imaginary parts 
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2 [tan(�89 ~At)] 

2 
= At [tan(rcw/a~s)], --O3N < o3 '< ~ N  

(5.10.66) 

where .~s/(27r) - f~ is the sampling frequency ~ = 1~At). We note that the derivation 
of (5.10.66) is equivalent to the conformal mapping 

2 1 - z  
w - i ~  ~ (5.10.67a) 

At l + z  

where 

Z - -  e 2~rifAt - -  e i"Hxt (5.10.67b) 

is the standard z-transform. 
The transfer function of the (discrete) low-pass Butterworth filter is then (Rabiner 

and Gold, 1975) 

] H L  ( w )  [2 __ 1 
1 + [tan(TrW/Ws)/tan(Tr~c/~s)] 2q (5.10.68a) 

and that of the high-pass Butterworth filter 

IHH(~)[2 = [ tan(Tr~/~s)/tan(Tr~c/~s)]2q 
1 + [tan(Tr~/OZs)/tan(Tr~oc/~s)] 2q 

(5.10.68b) 

The sampling and cut-off frequencies in these expressions are given by 
~Os- 27r/At and ~c = 27r/Tc in which Tc - 1/fc is the period of the cyclic cut-off 
frequency f~. Plots of (5.10.68a) for various cut-off frequencies and filter order q are 
presented in Figure 5.10.15. 

Use of the bilinear z-transform, i(1 - z ) / ( 1  + z), in (5.10.67a) eliminates aliasing 
errors that arise when the standard z-transform is used to derive the transfer function; 
these errors being large if the digitizing interval is large. Mathematically, the bilinear 
z-transform maps the inside of the unit circle (]z] < 1, for stability) into the upper half 
plane. A thorough discussion of the derivation of pole and zeros of Butterworth filters 
is presented in Kanasewich (1975) and Rabiner and Gold (1975). 

We note that the above relationships define the square of the response of the filter 
H(~) formed by multiplying the transfer function by its complex conjugate, H(w)* = 
H ( - ~ ) .  (In this instance, H(~)* and H ( - ~ )  are equivalent since i =  v / - 1) always 
occurs in conjunction with ~. The product H(w)H(-w)  eliminates any frequency- 
dependent phase shift caused by the individual filters and produces a squared, and 
therefore sharper, frequency response than produced H(w) alone. The sharpness of the 
filter (as determined by the parameter q) is limited by filter ringing and stability 
problems. When q becomes too large, the filter begins to act like a step and Gibbs' 
phenomenon rapidly ensues. 

Equations (5.10.68a, b) are used to design the filter in the frequency domain. In the 
time domain, we first determine the filter coefficients h~ and gj for the low-pass filter 
(5.10.2) and then manipulate the output from the transfer function H(w) to generate 
the output [H(~)[ 2. To obtain the output for a high-pass Butterworth filter, [HH(~)[ 2, 
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the output from the corresponding low-pass filter, tHL(co)l 2, is first obtained and the 
resulting data values subtracted from the original input values on a data point-by-data 
point basis. 

5.10.8.3 Tangent  versus sine filters 

Equations (5.10.68a, b) define the transfer functions of tangent Butterworth low-pass 
filters. Corresponding transfer functions for sine Butterworth low-pass filters are given 
by 

IHL(~)I2 = 1 (5 10.69) 
1 + [sin(Trco/COs)/sin(rrCOc/COs)] 2q 

where we have simply replaced tanx with sinx in (5.10.68). Although this book deals 
only with the tangent version of the filter, there are situations where the sine-version 
may be preferable (Otnes and Enochson, 1972). The tangent filter has "superior" 
attenuation within the stop-band but at a cost of doubled algebraic computation (the 
sine version has only recursive terms while the tangent version has both recursive and 
nonrecursive terms). 

Figure 5.10.15. Same as Figure 5.10.14 but for discrete, low-pass squared Butterworth filters. (After 
Rabiner and Gold, 1975.) 
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5.10. 8.4 Filter design 

The design of Butterworth filters is discussed in Hamming (1977). Our approach is 
slightly different but uses the same general concepts. We begin by specifying the 
sampling frequency ws = 27:f~ = 27r/At based on the sampling interval At for which 

0 < W/as < 0.5 (5.10.70) 

and where the upper limit denotes the normalized Nyquist frequency, WN/Ws. We next 
specify the desired cut-off frequency w~ at the half-power point of the filter. For best 
results, the normalized cut-off frequency of the filter, Wc/Ws, should be such that the 
transition band of the filter does not overlap to any significant degree with the ends of 
the sampling domain (5.10.70). Once the normalized cut-off frequency (or fre- 
quencies) is known, specification of the filter order q fully determines the character- 
istics of the filter response. Our experience suggests that the parameter q should be 
less than 10 and probably not larger than eight. Despite the use of double precision 
throughout the calculations, runoff errors and ringing effects can distort the filter 
response for large q and render the filter impractical. 

There are two approaches for Butterworth filter design once the cut-off frequency is 
specified. The first is to specify q so that the attenuation levels in the pass and stop- 
bands are automatically determined. The second is to calculate q based on a required 
attenuation at a given frequency, taking advantage of the fact that we are working with 
strictly monotonic functions. Suppose we want an attenuation o f - D  decibels at 
frequency Wa in the stop-band of a low-pass filter having a cut-off frequency Wc < wa. 
Using the definition for decibels and (5.10.48), we find that 

log (10 D/l~ - 1) 
q - 0 . 5  

log (Wa/Wc ) 

D/20 for D > 10 
log (Wa /wc ) ' 

(5.10.71) 

where D is a positive number measuring the decrease in filter amplitude in decibels 
(dB) and w is defined by (5.10.66). The nearest integer value can then be taken for the 
filter order provided that the various parameters (wa,D) have been correctly specified 
and q is less than 10. If the latter is not followed, the imposed constraints are too 
severe and new parameters need to be specified. The above calculations apply equally 
to specification of q based on the attenuation - D  at frequency wa < wc in the stop- 
band of a high-pass filter, except that log(wJWc) in (5.10.71) is replaced by log(wc/Wa). 
Since log(x) - - log( l /x) ,  we can simply apply (5.10.71) to the high-pass filter, ignoring 
the minus sign in front of log(l/x). 

5.10. 8. 5 Filter coefficients 

Once the characteristics of a transfer response have been specified, we need to derive 
the filter coefficients to be applied to the data in the time domain. We assume that the 
transfer function HL(w;q) of the low-pass filter can be constructed as a product, or 
cascade, of second-order (q - 2) Butterworth filters HL(w; 2) and, if necessary, one 
first-order (q - 1) Butterworth filter HL(W; 1). For example, suppose we required a 
filter of order q = 5. The transfer function would then be constructed via the cascade 
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HL(co; 5) -- HL(co; 1) x HL,l(co; 2) x HL,2(co;2) (5.10.72) 

in which the two second-order filters, HL, 1 and HL,2, have different algebraic structure. 
Use of the cascade technique allows for variable order in the computer code for Butter- 
worth filter programs without the necessity of computing a separate transfer function 
HL(co; q) each time. This eliminates a considerable amount of algebra and reduces the 
roundoff error that would arise in the "brute-force calculation" of HL for each order. 

The second-order transfer functions for a specified filter order q are given by 

[W2(Z 2 + 2z + 1)] (5.10.73a) 
HL(co; 2) - -akz2  + 2z(w 2 _ 1)+  {1 - 2Wcsin[Tr(2k + 1)/2q] + w  2} 

where w and z are defined by (5.10.66) and (5.10.67b) 

2 ak = 1 + 2Wcsin[Tr(2k + 1)/2q] + w c (5.10.73b) 

and k is an integer that takes on values in the range 

0 <_ k < 0 .5 (q -  1) (5.10.73c) 

When q is an odd number, the first-order filter HL(co; 1) must also be used where 

_ (  w~ ) z + l  (5.10.74) 

(I - 

HL(~; 1) 1 +Wc z -  +Wc 

Again, suppose that q = 5. The transfer function HL is then composed of the lead 
filter HL(~; 1) given by (5.10.74) and two second-order filters, for which k takes the 
values k = 0 and 1 in (5.10.73). Note that we have strictly adhered to the inequality in 
(5.10.73c). The first second-order filter is obtained by setting k = 0 in (5.10.73); the 
second second-order filter is obtained by setting k = 1. For q = 7, a third second-order 
for k = 2 would be required, and so on. 

The next step is to recognize that the first-order function (5.10.74) has the general 
form 

doz +d l  
HL(~) = (5.10.75) 

z - e l  

and that the second-order function (5.10.73a) has the general form 

Co Z2 -n t- C IZ --t- C 2 

HL (~) = z2 _ blZ - b2 
(5.10.76) 

where the sine terms in the coefficients of (5.10.73a) change with filter order q. The 
coefficients d, e in (5.10.74) are obtained by direct comparison with (5.10.73) while the 
coefficients b, c in (5.10.76) are obtained through comparison with (5.10.73a). 

The recursive digital filters (5.10.2), whose time-domain algorithms have the 
transfer functions (5.10.75) and (5.10.76) are, respectively 

Yn = doxn + d lXn- I  + elYn-1 (5.10.77) 

and 
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( 
Input l Low-pass Butterworth 

L 
filter, with response 

Yn (n = 1, 2 ...... N) function, H09 

Output -I 
ly:<" =N, ..... ~) 

Invert the 
chronological 
order of Yn" 

Repeat application of / 
the low-pass Butterworth 

J filter, HO e ) 
. ,  

Output --~ 

J Yn'(.=I,2 N) I ...... 
Invert the 

chronological 
order of y,,' 

Input [ 

yn'(n=N,N- 1 ..... 1) 

" Low-pa'ss r, heled record ) 
(Yn)L = Yn", n = 1 ...... N 

__ 

, . ,  

~ High-passfilteredrecord ~ , 
(Yn)tt = Yn - (Yn)L 

" I l l  

Subtract from 
original y,, 

, I '  

Figure 5.10.16. The procedure for obtaining low and high-pass Butterworth filters. 

yn--~W,.Xn-r--~-~Wn-rx,. (5.10.83) 
i ' =  - - S  Y---= - - S  

is shorter than the original series by 2s values. The effect of the convolution is to smear 
the signal x(t) according to the weighting imposed by the impulse response function 
(IRF), w(t). The frequency response function (FRF) 

x(t) I iFFT(af terpaddingthe lx ( l ) - - -~ i  2 u values) J . . . . . .  put x(t) with zeros to make | - . 
Input 

I Nlultipl) X~) b)the "~ 
X'(J) response function H(f) | 

of hiell, low or bandpass | 
". filter_ . ) 

Selected 
frequencies 
removed 

.. I lnverse FFT of X'(D ) x'(t) 
.... Output 

Fourier 
coefficients 

Figure 5.10.17. The procedure for obtaining discrete Fourier transform filters for application in the 
frequency domain. 
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(Gibbs' phenomenon) occurs throughout the entire time series and becomes evident 
when the filtered FFT data are inverted to recover the desired filtered time-series 
data. The effects of Gibbs' phenomenon are mitigated by tapering the frequency- 
domain filter using a linear or cosine function. 

According to Thompson (1983), careful construction of weighting functions in the 
time domain can more effectively remove tidal components than Fourier transform 
filtering. This is because tidal frequencies do not generally coincide with Fourier 
frequencies of the record length. Design of IRF weights to minimize the squared 
deviation from some specified norm (least squares filter design) offers more control 
over the FRF at particular nonFourier frequencies. On the other hand, broad-band 
signals are best served by the FRF approach. Evans (1985) suggests that the ratio of 
convolution cost to windowing cost is E = S/[2 log 2(N)], where S is the filter span. If 
E > 1, then windowing in the frequency domain is more efficient method. Forbes 
(1988) addressed the problem of removing tidal signals from the data while retaining 
the near-inertial signal and argues that Fourier transform filtering is effective 
provided that careful consideration is given to the filter bandwidth and the amount of 
tapering of the sides of the filter. Note that, in trying to remove strong tidal signals 
from a data series, it is sometimes beneficial to first calculate the tidal constituents and 
then subtract the harmonically predicted tidal signal from the data prior to filtering. 
This is time consuming and not an advantage if the filter is properly designed. 

Figure 5.10.18(a) shows the energy-preserving power spectrum for a mid-depth 
current meter record from a Cape Howe mooring site (37~ 150~ off the coast 
of New South Wales. To remove the strong tidal motions from this record, Forbes first 
used an untapered discrete Fourier transform (DFT) with 12 and 17 adjacent Fourier 
coefficients set to zero in the diurnal and semidiurnal bands, respectively (Figure 
5.10.18b). The greatest improvement in the Fourier transform filtering came from 
setting only three Fourier terms to zero but tapering the filter with a nine-point cosine 
taper in the frequency domain at the diurnal and semidiurnal frequencies (Figure 
5.10.18c). Thus, tapering the time series, not widening the filter by using more zero 
frequencies, is a better way to improve filter characteristics. Perhaps, the most 
important conclusion from Forbes' work is that DFT filters are effective if the number 
of Fourier coefficients set to zero is sufficient to cover the unwanted frequency band 
and if the filter is cosine-tapered in the frequency domain to ensure a smooth 
transition to nonzero Fourier coefficients. In the nonintegral single-frequency case 
presented here (Forbes was looking at near-inertial motions) this amounted to a three- 
point filter with a nine-point cosine taper. The widths of the filter and taper must be 
determined for each application by a careful examination of the spectrum for leakage 
into adjacent frequencies, but once this is done, the technique is fast and simple to 
apply. 

To summarize the use of Fourier transform filtering: 

(1) Remove any linear trend (or nonlinear trend if it is well defined) from the data 
prior to filtering but do not be too concerned with cosine tapering the first and last 
10% of the data. Fast Fourier-transform the data. 

(2) Define the Fourier transform filter H(~) for both positive and negative 
frequencies with the extreme frequencies given by ~l/2At. 

(3) If the measured data are real, and the filtered output is to be real, the filter should 
obey H ( - ~ )  = H(~)*, where the asterisk denotes complex conjugate. The easiest 
way to satisfy this condition is to pick H(~) real and symmetric in frequency. 
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(4) If H(co) has sharp vertical edges then the impulse response of the filter (the 
response arising from a short impulse as input) will have damped ringing at 
frequencies corresponding to these edges. If this occurs, pick a smoother H(co). 
You can take the FFT inverse of H(co) to see the impulse response of the filter. 
The more points used in the smoothing the more rapid the fall of the impulse 
response. 

(5) Multiply the transformed data series X(co) by H(co) and invert the resultant data 
series, Y(co), to obtain the filtered data in the time domain. To eliminate ringing 
effects, discard T/2 data points from either end of the filtered time series, where T 
is the span of the IRF for the transform filter. 

(a) (b) 
40 20  .. . . . .  

q 

E 
v 

L. 

s 
0.01 

~p 

r 

l 0 
0.02 .I0 0. 0.I0 

KI M2 KI M2 

Frequency (cph) Frequency (cph) 

(c) 
2O 

4" 

c 1 oo, o'o  'CoCo 
KI M2 

Frequency ( c p h )  

Figure 5.10.18. Energy-preserving spectra for a 4000-h current meter record at 720-m depth off Cape 
Howe, Australia. (a) Raw hourly data; (b) after applying a discrete Fourier transform (DFT) filter with 
12 and 17 adjacent Fourier coefficients set to zero in the diurnal and semidiurnal bands (no tapering); (c) 
after applying a DFT filter with three Fourier coefficients set to zero and nine Fourier coefficients cosine- 

tapered on each side of the zero coefficients. (From Forbes, 1988.) 
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Figure 5.10.19. Ringing effects following application of different discrete Fourier transform filters to an 
artificial time series with frequency f - 0.05 cph and then inverting the transform. (a) Single Fourier 
coefficient at 0.05 cph set to zero; (b) three Fourier coefficients set to zero; (c) five Fourier coefficients set 

to zero; (d) 21 coefficients set to zero. (From Forbes, I988.) 
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The study of fractal geometry is related to the problem of predictability and 
propagation of order in nonequilibrium, frictionally dependent dynamical systems, 
such as turbulent flow in real fluids. In fluid systems, predictability is related to the 
rate at which initially close fluid particles diverge and the sensitivity of this diver- 
gence to initial conditions. Since low predictability implies a highly irregular dynami- 
cal system with sensitive dependence on initial conditions, the dispersion of tagged 
fluid parcels is related to the ultimate skill that can be achieved by deterministic 
numerical prediction models. 

The fractal (or Hausdorff) dimension, D, provides a measure of the roughness of a 
geometrical object. For example, drifter trajectories confined to a horizontal plane can 
have a fractal dimension somewhere between that of a topological curve (D = 1) and 
that of random Brownian motion (D = 2). The case D = 1 is for a smooth differen- 
tiable curve whose length remains constant regardless of how the measurements are 
made. For fractal curves (D > 1), the length of the curve increases without bound for 
decreasing segment length. In the absence of a stationary mean flow, the track of a 
fluid parcel undergoing Brownian (random-walk) motion will eventually occupy the 

(b) 

~ 1 7 6 1 7 6  

Figure 5.11.1. Examples of common fractals. (a) Generation of the Koch curve fractal by successive 
attachment of equilateral triangles; D = 1.262; (b) generation of the Sierpinski gasket fractal by 

successive removal of smaller triangles; D = 1.585. 



O
 

0 

+ I L<
 

II
 

II
 

II
 I 

! 

i-
..
.i
 

L~
 

cT
 

,..
,-~

 ~
 ~

 ~
 ~

. ~
 

,-
,'.

 0
"r 

0"
~ 

A
 

~ 
~ 

r'*
 

~ 

~
~

,~
 

~
-~

~
 

~-
~ 

~ 
.
.
=
~
.
 

~
~

 

--t
- 

,.<
 

~ 
m-

-' 

~ 
ii 

o 
r~

 
r~

 
~,

..
.~

 

~
V
 

,
<
~
.
 

o
~
 

k.
, 

~ 
=,

.. 
~ 

~.
 F

'%
 

~.
 

I'D
 

"e
l t"1
) 

I,
,-

IF
 

0 

= 
~ 

~
m

~
o

~
.

~
 

~ 

o 
F

..
~

- 
,-.

. 
i L

~
.-

 
=

a~
..

 
,-.

, 
=.~

 
~ 

==
-"

 
o 

,--
,_

, 
~

o
=

o
 

�9
 

,_
,.

 
~ 

�9
 

= 
~,

=-
"~

 
=

N
 

N
~

 
,_,

 
<

- 

0"
r 

,-
-,

 
~ 

"~
 

~ 
;.

a.
, 

~ 
-~

 
~ 

~
~

 
~ 

. 
~ 

~ 
~ 

~ 
~

F
. 

.,
~ 

o 
~=

 ~
 

=
'-

' 
,-,

 

~t
~ 

~ 
~ 

~ 
~-
-.
 

C
~
 

~-
~ 

~-
..
 

~-
~ 

~ 
. 

t'%
 

c,,m
 

r "-.
-..

! 



558 Data Analysis Methods in Physical Oceanography 

scaling exponents also can be found using the absolute value of the above functions 
(Osborne et al., 1989) 

[y(t + a/Xt) - y ( t ) l  - ct2H" [Y(t 4- A t ) - Y ( t ) l  (5.11.2c) 

Ix(t + a/Xt) - x(t)l = c~ 2H~ Ix(t + At) - x(t)l (5.11.2d) 

Figure 5.11.2 provides examples of the scaling exponents, Hy, derived from (5.11.2b) 
using one-year time series of 6-hourly meridional displacements of 120-m-drogued 
satellite-tracked drifters launched in the northeast Pacific in 1987. Part (a) of the 
figure is the log of the structure function 

1/2 
{[y(t + o~At) -y( t ) ]  2 } 

versus log (a). The slopes of these curves, Hy, are presented in part (b). Figure 5.11.3 
is the same as Figure 5.11.2 except that it uses artificial drifter tracks generated from a 
Brownian motion (random-walk) algorithm. For the real drifter data, all four tracks 
had a constant fractal dimension Dy = l /Hy ,~ 1.18 • 0.07 over time scales of about 
0.5-10 days. At longer time scales, motions were strongly affected by mesoscale eddies 
(cf. Thomson et al., 1990) and fractal analysis is no longer valid. For the pseudo- 
drifters, Dy ~ 2, which is what we would expect for a random-walk regime in which 
the drifters can occupy the entire two-dimensional space available to them. 

Although confined to monofractal functions, the scaling dimension approach is 
attractive because it is computationally fast and defined in terms of simple scaling 
properties. The principal drawback is that irregularly sampled particle trajectories, 
such as those of satellite-tracked drifters, must be converted to equally spaced data 
using a spline or other interpolation scheme. For isotropic monofractal trajectories, a 
single fractal dimension is sufficient to define the overall scaling properties of the 
motions including scaling properties of the mean, variance, and higher moments. 
Anisotropy in the drifter motions may lead to significantly different values for the 
scaling exponents H~, Hy, and associated fractal dimensions. Where these differences 
are small, fractal dimensions can be expressed through a mean Scaling exponent, 
H - � 8 9  +Hy).  

5.11.2 The yardstick method 

The fractal dimension of a drifter trajectory of length L(A) can be measured in the 
usual sense using a ruler (or yardstick) with variable length, A. As the length of the 
ruler is decreased and the yardstick estimation of the total length becomes more 
precise, the length of the trajectory will follow a power-law dependence 

L(A) ~ A1-D~-; lim A ~ 0 (5.11.3) 

The divider dimension DL, which closely approximates the fractal dimension D, is 
found from the slope of log-transformed L(A) for small length scales A (Figure 
5.11.4). The case Dc = 1 is the topological dimension for a smooth differential curve. 
For fractal dimensions, D > 1 and the length of the curve increases without bound for 
decreasing segment length. 
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Figure 5.I1.2. Structure functions and scaling exponents for trajectories of four 6-hourly sampled, 120- 
m-drogued satellite-tracked drifters launched in the northeast Pacific in 1987. (a) Absolute values of the 
structure functions versus the scaling factor, o~, plotted on a log-log scale. (b) Slopes, Hy, of the curves in 

(a) versus scaling factor. Slopes were roughly equal and constant over time scales of one to 10 days. 
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Figure 5.11.3. As in Figure 5.11.2 except for pseudo-drifter tracks generated using a random number 
generator. In this case, H~j ~ 0.5 and drifters perform a non-fractal random walk with dimension 

D ~ 2 .  
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A problem with applying equation (5.11.3) to irregularly sampled drifter records is 
that the data are unequally sampled both in time and space. Although it makes sense 
to use a spline-interpolation scheme to generate scalar coordinate data with equally 
spaced time increments, it is less meaningful to generate coordinate series with 
equally sampled positional increments. The reason is simple enough: Time is single- 
valued whereas location is not. Drifters often loop back on themselves. If the data are 
not equally spaced, we cannot define a sequence of fixed-length yardsticks but must 
measure the curve L(A) as a function of the average yardstick length, Aav. This 
averaging is valid provided the errors introduced by the averaging process are no 
worse than those arising from other sources (cf. Osborne et al., 1989). Another problem 
with the yardstick method is that it is based on the slope of (5.11.3) for small spatial 
scales. The measurement  of these scales is often difficult in practice due to limitations 
in the response and/or positioning of the drifters, cyclone, or other Lagrangian 
particle. 

5.11.3 Box counting method 

In this method, one counts the number  Nm(L) of boxes of length L in m-dimensional 
space that are needed to cover a "cloud" or set of points in the space. The Hausdorff-  
Besicovich dimension, D, of this set can be estimated by determining the number of 
cubes needed to cover the set in the limit as L ~ 0. For a fractal curve, the number of 
boxes increases without bound as L ~ 0. That is . . . . . . . .  

Nm(L) ~ L -D, L ~ 0 (5.11.4) 

If the original series is random, then D - n for any dimension n (a random process 
embedded in an n-dimensional space always fills that space). If, however, the value of 
D becomes independent ofn (i.e. reaches a saturation value, Do, say), it means that the 
system rep re sen t edby  the time series has some structure and should possess an 
attractor whose Hausdorff-Besicovitch dimension is equal to Do. Once saturation is 
reached, extra dimensions are not needed to explain thedynamics  of the system. 

As an example, if we were to measure the area of surfaces embedded in three- 
dimensional space, wewould count the number N3(L) of cubic boxes of size L required 
to cover the surface. The area S is then of order 

S ~ N 3 ( L ) L  2 (5.11.5) 

For a nonfractal surface, the area asymptotes to a constant value independent of L, 
which is the true area of the surface. In general 

N3(L) ~ L  -D, S ~ L 2-D (5.11.6) 

5.11.4 Correlation dimension 

An important  method for determining the self-similarity of monofractal curves has 
been proposed by Grassberger and Procaccia (1983). The technique also has found 
widespread use in studies of chaos and the dimensionality of strange attractors. 
Specifically, one determines the number  of times that the computed distances d 0 
between points in a time series x(ti) (or pair of time series xi(t) and xj(t)) are less than a 
prescribed length scale, c. That is, one finds what fraction of the total number of 
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Figure 5.11.4. Yardstick length L(/1) measured using a ruler with variable average yardstick length,/1,,, 
(in degrees of latitude), for three drifters launched in the Kuroshio Extension in 1977. (a) Linear 
coordinates; and (b) log-log coordinates. Note the divergence of the lengths for small A. (bu Osborne 

et al., 1989.) 

possible estimates of the distance dij - Ix(ti) - x(tj)] that are less than r For a single 
discrete vector time series, the Grassberger-Procaccia correlation function is defined 
as  

1 M 

C(e) - M ( M  - 1) E .  H[e - Ix(ti) - x(tj) ], 
td 

M ~ o e  (5.11.7) 

where H(c, r0) is the Heavyside step function (= 0 for r < r; = 1 for e > r) and M is 
the number of points in the time series. In (5.11.7), the vertical bars denote the norm 
of the vector d i j -  [ ( x ( t i ) -  xj)2+ (y( t i )_yj)2]l /2 .  The fractal dimension for a self- 
affine curve is then obtained as the correlation dimension defined by 

C(e)~r ~', e--+0 (5.11.8) 

The fractal dimension is obtained from the log-transformed version of this equation 
(Figure 5.11.5). According to Osborne et al. (1989), the correlation method gives the 
least uncertainty in the estimate of the fractal dimension whereas largest errors are 
associated with the exponent scaling method. 
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5.11.5 D i m e n s i o n s  of multifractal functions 

The various techniques discussed above will (within statistical error) give the same 
fractal dimension provided that the series being investigated exhibits self-similar 
monofractal behavior. However, because the techniques rely on different assumptions 
and measure different scaling properties of the series, the calculated dimensions will 
be different if the series has a multifractal structure. Multifractal properties are 
related to multiplicative random processes and are associated with different scaling 
properties at different scales. 

A form of box-counting can be used to study the multifractal properties of ocean 
drifters (Osborne et al., 1989). Given a fractal curve on a plane, the plane is covered 
with adjacent square boxes of size A and the probability, pi(A),  is computed that the 
ith box contains a piece of the fractal curve 

ni(A) ( 5 . 1 1 . 9 )  
p i ( A )  = N 

where ni is the number  of data points falling in the ith box and N is the total number 
of points in the time series. For fractal curves for small A 

[ p i ( A ) ]  q ~,  A (q-1)D (5.11.10) 
i 

where the sum is extended over all nonempty boxes. The quantities D = Dq are the 
generalized fractal dimensions. A fundamental difference between monofractals and 
multifractals is that for monofractals Dq is the same for all q while for multifractals the 
different generalized dimensions are not equal. In general, Dq < Dq, for q > q'. 

10 o 
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Figure 5.11.5. Correlation functions C(c) for three drifters launched in the Kuroshio Extension in 1977. 
The slope of the function in log-log coordinates is a measure of the correlation dimension of the signal. 
The two vertical lines indicate the approximate limits of the scaling range. (From Osborne et al., 1989.) 
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5.11.6 Predictability 

A box-counting method can be used to investigate the degree of chaotic behavior 
associated with the Lagrangian motions such as those of drifters and tropical cyclones. 
In this method, one counts the number Nn(A) of boxes of dimension A in n- 
dimensional space needed to cover a "cloud" or set of points in the space in the limit 
A ---, 0. In practice, the box-counting method is difficult to apply. Estimates of the 
predictability of drifter trajectories are more readily obtained using the correlation 
integral technique of Grassberger and Pocaccia (1983). In this case, the degree of 
predictability is found from the dimension of the attractor derived from an embedded 
phase space created from all possible pairs of "drifters". The phase space serves, in 
turn, as a substitute for the state space needed to study the dynamics of a system 
(Tsonis and Eisner, 1990). 

The analysis takes the following steps: (1) we first consider a pair of independent 
tracks of length mAt, where m is the embedding dimension and At the sampling 
increment. Specifically, consider the cyclone tracks for Australia for July 1982 and 
1983 (Figure 5.11.6a) examined by Fraedrich et al. (1990). For convenience, the start 
times and positions of the tracks are reinitialized so that they begin at the same time 
and location. Fraedrich and Leslie (1989) found that the errors introduced by 
reinitializing are less than those from other sources; (2) we next examine the 
divergence of the paths by calculating the multiple track correlation function (or 
correlation integral) Cm(e) for the particular embedding dimension m and path 
separation scale, c. To this end, we count the number tracks Nm (e) of length mat  for 
which the track length remains less than the great circle distance e for all the segments 
in the track. For m = 1, each individual data point forms a unit-length segment of the 
drifter track. One then counts the number of times, N1 (c), that the distance between 
the drifter positions is less than e for the N = m possible drifter tracks. The distance 
between each drifter pair is considered; hence, for 10 drifters or cyclone tracks there 
would be 10 • 10 --- 100 pairs. This process is repeated for all values of m to create a 
cloud of points in m-dimensional space which then approximate the dynamics of the 
system from which the observations x(t) are drawn. The correlation integral is defined 
by 

Nm(~) 
C m ( e )  - I N t o  - 1] 2 (5.11.11) 

where N,,,(e) is the number of pairs of trajectories of dimension m that remain less 
than a distance c from one another. Note that the numerator in the above expression is 
a squared quantity since it is based on the number of drifter pairs; (3) we then plot 
log [Cm(e)] versus In(e) to find the slope D2 of the curve 

Cm(e) ~ e De, e ---+ 0 (5.11.12) 

The subscript "2" indicates that pairs of points are used to create the phase space. 
If both original time series are random, then D2 = 2m. A random process embedded 

in a 2m-dimensional space always fills that space. On the other hand, if D2 becomes 
independent of m at some saturation value, Do, it means that the system represented 
by the time series has some structure (i.e. predictability) and should possess an 
attractor whose Hausdorff-Besicovitch dimension is equal to Do (Figure 5.11.6b). The 
need to calculate Do from the observations arises because we do not know the value of 
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